Difference between revisions of "Lamé equation"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(eqref) |
||
Line 13: | Line 13: | ||
A linear ordinary second-order differential equation in the complex domain | A linear ordinary second-order differential equation in the complex domain | ||
− | + | \begin{equation} \label{eq1} | |
\frac{d ^ {2} w }{d z ^ {2} } | \frac{d ^ {2} w }{d z ^ {2} } | ||
= \ | = \ | ||
\left [ A + B {\mathcal p} ( z) \right ] w , | \left [ A + B {\mathcal p} ( z) \right ] w , | ||
− | + | \end{equation} | |
where $ {\mathcal p} ( z) $ | where $ {\mathcal p} ( z) $ | ||
− | is the [[Weierstrass p-function|Weierstrass | + | is the [[Weierstrass p-function|Weierstrass ${\mathcal p}$-function]] and $ A $ |
− | function]] and $ A $ | ||
and $ B $ | and $ B $ | ||
− | are constants. This equation was first studied by G. Lamé [[#References|[1]]]; it arises in the separation of variables for the Laplace equation in elliptic coordinates. Equation | + | are constants. This equation was first studied by G. Lamé [[#References|[1]]]; it arises in the separation of variables for the Laplace equation in elliptic coordinates. Equation \eqref{eq1} is also called the Weierstrass form of the Lamé equation. By a change of the independent variable in \eqref{eq1} one obtains Jacobi's form of the Lamé equation: |
− | + | \begin{equation*} | |
\frac{d ^ {2} w }{d u ^ {2} } | \frac{d ^ {2} w }{d u ^ {2} } | ||
= \ | = \ | ||
\left [ C + D \mathop{\rm sn} ^ {2} u \right ] w . | \left [ C + D \mathop{\rm sn} ^ {2} u \right ] w . | ||
− | + | \end{equation*} | |
− | There are also numerous algebraic forms of the Lamé equation, transition to which is carried out by various transformations of the independent variable in | + | There are also numerous algebraic forms of the Lamé equation, transition to which is carried out by various transformations of the independent variable in \eqref{eq1}, for example: |
− | + | \begin{equation} \label{eq2} | |
\frac{d ^ {2} w }{d \xi ^ {2} } | \frac{d ^ {2} w }{d \xi ^ {2} } | ||
Line 56: | Line 55: | ||
\frac{dw}{d \xi } | \frac{dw}{d \xi } | ||
= | = | ||
− | |||
− | |||
− | |||
− | |||
\frac{A + B \xi }{4 ( \xi - e _ {1} ) ( \xi - e _ {2} ) ( \xi - e _ {3} ) } | \frac{A + B \xi }{4 ( \xi - e _ {1} ) ( \xi - e _ {2} ) ( \xi - e _ {3} ) } | ||
w . | w . | ||
− | + | \end{equation} | |
For practical applications the Jacobi form is the most suitable. | For practical applications the Jacobi form is the most suitable. | ||
− | Especially important is the case when in | + | Especially important is the case when in \eqref{eq1} (or \eqref{eq2}) $ B = n ( n + 1 ) $, |
where $ n $ | where $ n $ | ||
− | is a natural number. In this case the solutions of | + | is a natural number. In this case the solutions of \eqref{eq1} are meromorphic in the whole plane and their properties have been thoroughly studied. Among the solutions of \eqref{eq2} with $ B = n ( n + 1 ) $ |
− | the Lamé functions are of paramount importance (cf. [[ | + | the Lamé functions are of paramount importance (cf. [[Lamé function]]). |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Lamé, "Sur les surfaces isothermes dans les corps homogènes en équilibre de température" ''J. Math. Pures Appl.'' , '''2''' (1837) pp. 147–188</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.J.O. Strutt, "Lamésche, Mathieusche und Verwandte Funktionen in Physik und Technik" ''Ergebn. Math.'' , '''1''' : 3 (1932)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''3. Automorphic functions''' , McGraw-Hill (1955)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.W. Hobson, "The theory of spherical and ellipsoidal harmonics" , Cambridge Univ. Press (1931)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> G. Lamé, "Sur les surfaces isothermes dans les corps homogènes en équilibre de température" ''J. Math. Pures Appl.'' , '''2''' (1837) pp. 147–188</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.J.O. Strutt, "Lamésche, Mathieusche und Verwandte Funktionen in Physik und Technik" ''Ergebn. Math.'' , '''1''' : 3 (1932)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''3. Automorphic functions''' , McGraw-Hill (1955)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.W. Hobson, "The theory of spherical and ellipsoidal harmonics" , Cambridge Univ. Press (1931)</TD></TR> | ||
+ | </table> |
Revision as of 17:11, 1 May 2024
A linear ordinary second-order differential equation in the complex domain
\begin{equation} \label{eq1} \frac{d ^ {2} w }{d z ^ {2} } = \ \left [ A + B {\mathcal p} ( z) \right ] w , \end{equation}
where $ {\mathcal p} ( z) $ is the Weierstrass ${\mathcal p}$-function and $ A $ and $ B $ are constants. This equation was first studied by G. Lamé [1]; it arises in the separation of variables for the Laplace equation in elliptic coordinates. Equation \eqref{eq1} is also called the Weierstrass form of the Lamé equation. By a change of the independent variable in \eqref{eq1} one obtains Jacobi's form of the Lamé equation:
\begin{equation*} \frac{d ^ {2} w }{d u ^ {2} } = \ \left [ C + D \mathop{\rm sn} ^ {2} u \right ] w . \end{equation*}
There are also numerous algebraic forms of the Lamé equation, transition to which is carried out by various transformations of the independent variable in \eqref{eq1}, for example:
\begin{equation} \label{eq2} \frac{d ^ {2} w }{d \xi ^ {2} } + \frac{1}{2} \left ( \frac{1}{\xi - e _ {1} } + \frac{1}{\xi - e _ {2} } + \frac{1}{\xi - e _ {3} } \right ) \frac{dw}{d \xi } = \frac{A + B \xi }{4 ( \xi - e _ {1} ) ( \xi - e _ {2} ) ( \xi - e _ {3} ) } w . \end{equation}
For practical applications the Jacobi form is the most suitable.
Especially important is the case when in \eqref{eq1} (or \eqref{eq2}) $ B = n ( n + 1 ) $, where $ n $ is a natural number. In this case the solutions of \eqref{eq1} are meromorphic in the whole plane and their properties have been thoroughly studied. Among the solutions of \eqref{eq2} with $ B = n ( n + 1 ) $ the Lamé functions are of paramount importance (cf. Lamé function).
References
[1] | G. Lamé, "Sur les surfaces isothermes dans les corps homogènes en équilibre de température" J. Math. Pures Appl. , 2 (1837) pp. 147–188 |
[2] | M.J.O. Strutt, "Lamésche, Mathieusche und Verwandte Funktionen in Physik und Technik" Ergebn. Math. , 1 : 3 (1932) |
[3] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6 |
[4] | H. Bateman (ed.) A. Erdélyi (ed.) , Higher transcendental functions , 3. Automorphic functions , McGraw-Hill (1955) |
[5] | E.W. Hobson, "The theory of spherical and ellipsoidal harmonics" , Cambridge Univ. Press (1931) |
Lamé equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lam%C3%A9_equation&oldid=55748