Namespaces
Variants
Actions

Difference between revisions of "Asymptotic invariant of a group"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(→‎References: zbl link)
 
Line 29: Line 29:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Ghys,  "Les groupes hyperboliques"  ''Astérisque'' , '''189–190'''  (1990)  pp. 203–238  (Sém. Bourbaki Exp. 722)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Gromov,  "Hyperbolic groups"  S.M. Gersten (ed.) , ''Essays in Group Theory'' , ''MSRI Publ.'' , '''8''' , Springer  (1987)  pp. 75–263</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M. Gromov,  "Asymptotic invariants of infinite groups" , ''Proc. Symp. Sussex, 1991: II'' , ''London Math. Soc. Lecture Notes'' , '''182''' , Cambridge Univ. Press  (1993)  pp. 1–291</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Ghys,  "Les groupes hyperboliques"  ''Astérisque'' , '''189–190'''  (1990)  pp. 203–238  (Sém. Bourbaki Exp. 722) {{ZBL|0744.20036}}</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Gromov,  "Hyperbolic groups"  S.M. Gersten (ed.) , ''Essays in Group Theory'' , ''MSRI Publ.'' , '''8''' , Springer  (1987)  pp. 75–263</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  M. Gromov,  "Asymptotic invariants of infinite groups" , ''Proc. Symp. Sussex, 1991: II'' , ''London Math. Soc. Lecture Notes'' , '''182''' , Cambridge Univ. Press  (1993)  pp. 1–291</TD></TR>
 +
</table>

Latest revision as of 09:44, 14 April 2024


A property of a finitely-generated group $ G $ which is a quasi-isometry invariant of the metric space $ ( G,d _ {A} ) $, where $ d _ {A} $ is the word metric associated to a finite generating set $ A $ of $ G $( cf. also Quasi-isometric spaces). This definition does not depend on the choice of the set $ A $, since if $ B $ is another finite set of generators of $ G $, then the metric spaces $ ( G,d _ {A} ) $ and $ ( G,d _ {B} ) $ are quasi-isometric.

The theory of asymptotic invariants of finitely-generated groups has been recently brought to the foreground by M. Gromov (see, in particular, [a2] and [a3]). As Gromov says in [a3], p. 8, "one believes nowadays that the most essential invariants of an infinite group are asymptotic invariants" . For example, amenability (cf. Invariant average), hyperbolicity (in the sense of Gromov, cf. Hyperbolic group), the fact of being finitely presented (cf. Finitely-presented group), and the number of ends (cf. also Absolute) are all asymptotic invariants of finitely-generated groups. It is presently (1996) unknown whether the Kazhdan $ T $- property is an asymptotic invariant. For an excellent survey on these matters, see [a1].

A few examples of algebraic properties which are asymptotic invariants of finitely-generated groups are: being virtually nilpotent, being virtually Abelian, being virtually free.

References

[a1] E. Ghys, "Les groupes hyperboliques" Astérisque , 189–190 (1990) pp. 203–238 (Sém. Bourbaki Exp. 722) Zbl 0744.20036
[a2] M. Gromov, "Hyperbolic groups" S.M. Gersten (ed.) , Essays in Group Theory , MSRI Publ. , 8 , Springer (1987) pp. 75–263
[a3] M. Gromov, "Asymptotic invariants of infinite groups" , Proc. Symp. Sussex, 1991: II , London Math. Soc. Lecture Notes , 182 , Cambridge Univ. Press (1993) pp. 1–291
How to Cite This Entry:
Asymptotic invariant of a group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotic_invariant_of_a_group&oldid=55718
This article was adapted from an original article by A. Papadopoulos (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article