Difference between revisions of "Asymptotic power series"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 34: | Line 34: | ||
\frac{a _ {n} }{x ^ {n} } | \frac{a _ {n} }{x ^ {n} } | ||
,\ \ | ,\ \ | ||
− | g (x) \sim \sum _ {n = 0 } ^ \infty | + | g (x) \sim \sum _ {n = 0 } ^ \infty \frac{b _ {n} }{x^n}. |
− | |||
− | \frac{b _ {n} }{x | ||
− | |||
$$ | $$ | ||
Line 45: | Line 42: | ||
$$ | $$ | ||
− | Af (x) + Bg (x) \sim \sum _ {n = 0 } ^ \infty | + | Af (x) + Bg (x) \sim \sum _ {n =0} ^ \infty \frac{A a _ {n} + B b _ {n} }{x^n} |
− | |||
− | \frac{A a _ {n} + B b _ {n} }{x | ||
− | |||
$$ | $$ | ||
− | ( $ | + | ($A, B $ are constants); |
− | are constants); | ||
2) | 2) | ||
$$ | $$ | ||
− | f (x) g (x) \sim \sum _ {n = 0 } ^ \infty | + | f (x) g (x) \sim \sum _ {n = 0} ^ \infty |
− | \frac{c _ {n} }{x | + | \frac{c _ {n} }{x^n } |
; | ; | ||
$$ | $$ | ||
Line 69: | Line 62: | ||
\frac{1}{f(x)} | \frac{1}{f(x)} | ||
\sim | \sim | ||
− | \frac{1}{ | + | \frac{1}{a_0} + \sum _ {n = 1 } ^ \infty \frac{d_n} {x^n} ,\ a _ {0} \neq 0 |
− | |||
− | \frac{ | ||
− | |||
$$ | $$ | ||
− | ( $ | + | ($c _ {n} , d _ {n} $ are calculated as for convergent power series); |
− | are calculated as for convergent power series); | ||
4) if the function $ f(x) $ | 4) if the function $ f(x) $ | ||
Line 88: | Line 77: | ||
\sim \sum _ {n = 1 } ^ \infty | \sim \sum _ {n = 1 } ^ \infty | ||
− | \frac{a _ {n+1} }{ | + | \frac{a _ {n+1} }{n x ^ {n} } |
; | ; | ||
$$ | $$ | ||
Line 98: | Line 87: | ||
f ^ { \prime } (x) \sim - \sum _ {n = 2 } ^ \infty | f ^ { \prime } (x) \sim - \sum _ {n = 2 } ^ \infty | ||
− | \frac{( n - 1 ) a _ {n-1} }{x | + | \frac{( n - 1 ) a _ {n-1} }{x^n} . |
− | |||
$$ | $$ | ||
Revision as of 06:33, 14 April 2024
An asymptotic series with respect to the sequence
$$ \{ x ^ {-n} \} \ ( x \rightarrow \infty ) $$
or with respect to a sequence
$$ \{ ( x - x _ {0} ) ^ {n} \} \ ( x \rightarrow x _ {0} ) $$
(cf. Asymptotic expansion of a function). Asymptotic power series may be added, multiplied, divided and integrated just like convergent power series.
Let two functions $ f(x) $ and $ g(x) $ have the following asymptotic expansions as $ x \rightarrow \infty $:
$$ f (x) \sim \sum _ {n = 0 } ^ \infty \frac{a _ {n} }{x ^ {n} } ,\ \ g (x) \sim \sum _ {n = 0 } ^ \infty \frac{b _ {n} }{x^n}. $$
Then
1)
$$ Af (x) + Bg (x) \sim \sum _ {n =0} ^ \infty \frac{A a _ {n} + B b _ {n} }{x^n} $$
($A, B $ are constants);
2)
$$ f (x) g (x) \sim \sum _ {n = 0} ^ \infty \frac{c _ {n} }{x^n } ; $$
3)
$$ \frac{1}{f(x)} \sim \frac{1}{a_0} + \sum _ {n = 1 } ^ \infty \frac{d_n} {x^n} ,\ a _ {0} \neq 0 $$
($c _ {n} , d _ {n} $ are calculated as for convergent power series);
4) if the function $ f(x) $ is continuous for $ x > a > 0 $, then
$$ \int\limits _ { x } ^ \infty \left ( f (t) - a _ {0} - \frac{a _ {1} }{t} \right ) dt \sim \sum _ {n = 1 } ^ \infty \frac{a _ {n+1} }{n x ^ {n} } ; $$
5) an asymptotic power series cannot always be differentiated, but if $ f(x) $ has a continuous derivative which can be expanded into an asymptotic power series, then
$$ f ^ { \prime } (x) \sim - \sum _ {n = 2 } ^ \infty \frac{( n - 1 ) a _ {n-1} }{x^n} . $$
Examples of asymptotic power series.
$$ \int\limits _ { x } ^ \infty \frac{e ^ {x-t} }{t} dt \sim \ \sum _ {n = 1 } ^ \infty \frac{( -1 ) ^ {n-1} ( n - 1 ) ! }{x} ^ {n} ; $$
$$ \sqrt {x } e ^ {-ix} H _ {0} ^ {(1)} (x) \sim \sum _ {n = 0 } ^ \infty \frac{e ^ {-i \pi / 4 } ( - i ) ^ {n} [ \Gamma ( n + 1 / 2 ) ] ^ {2} }{2 ^ {n-1/2} \pi ^ {3/2} n ! x ^ {n} } , $$
where $ {H _ {0} ^ {(1)} } (x) $ is the Hankel function of order zero (cf. Hankel functions) (the above asymptotic power series diverge for all $ x $).
Similar assertions are also valid for functions of a complex variable $ z $ as $ z \rightarrow \infty $ in a neighbourhood of the point at infinity or inside an angle. For a complex variable 5) takes the following form: If the function $ f(z) $ is regular in the domain $ D= \{ | z | > a, \alpha < | { \mathop{\rm arg} } z | < \beta \} $ and if
$$ f (z) \sim \sum _ {n = 0 } ^ \infty \frac{a _ {n} }{z ^ {n} } $$
uniformly in $ { \mathop{\rm arg} } z $ as $ | z | \rightarrow \infty $ inside any closed angle contained in $ D $, then
$$ f ^ { \prime } (z) \sim - \sum _ {n = 1 } ^ \infty \frac{na _ {n} }{z ^ {n+1} } $$
uniformly in $ \mathop{\rm arg} z $ as $ | z | \rightarrow \infty $ in any closed angle contained in D.
References
[1] | E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965) |
[2] | A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) |
[3] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) |
Comments
References
[a1] | N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981) |
Asymptotic power series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotic_power_series&oldid=55715