Difference between revisions of "Window function"
m (AUTOMATIC EDIT (latexlist): Replaced 26 formulas out of 26 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
m (latex details) |
||
Line 19: | Line 19: | ||
\begin{equation*} g ( y ) = \left\{ \begin{array} { l l } { \frac { 1 } { \pi y } \operatorname { sin } 2 \pi y , } & { y \neq 0, } \\ { 2 , } & { y = 0, } \end{array} \right. \end{equation*} | \begin{equation*} g ( y ) = \left\{ \begin{array} { l l } { \frac { 1 } { \pi y } \operatorname { sin } 2 \pi y , } & { y \neq 0, } \\ { 2 , } & { y = 0, } \end{array} \right. \end{equation*} | ||
− | a version of the sinc function ($\operatorname{sinc}( 0 ) = 1$, $\operatorname { sinc } ( x ) = x ^ { - 1 } \operatorname { sin } x$ for $x \neq 0$), see [[#References|[a2]]], pp. 61, 104. In terms of the Heaviside function $H ( x )$ ($H ( x ) = 0$ for $x | + | a version of the sinc function ($\operatorname{sinc}( 0 ) = 1$, $\operatorname { sinc } ( x ) = x ^ { - 1 } \operatorname { sin } x$ for $x \neq 0$), see [[#References|[a2]]], pp. 61, 104. In terms of the Heaviside function $H ( x )$ ($H ( x ) = 0$ for $x < 0$, $H ( 0 ) = 1 / 2$, $H ( x ) = 1$ for $x > 0$), $r ( x )$ is given by |
\begin{equation*} r ( x ) = H ( x + 1 ) - H ( x - 1 ). \end{equation*} | \begin{equation*} r ( x ) = H ( x + 1 ) - H ( x - 1 ). \end{equation*} | ||
Line 28: | Line 28: | ||
====References==== | ====References==== | ||
− | <table><tr><td valign="top">[a1]</td> <td valign="top"> I. Daubechies, "Ten lectures on wavelets" , SIAM (1992) pp. Chap. 1</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> D.C. Champeney, "A handbook of Fourier transforms" , Cambridge Univ. Press (1989)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> A.I. Saichev, W.A. Woyczyński, "Distributions in the physical and engineering sciences" , '''1: Distribution and fractal calculus, integral transforms and wavelets''' , Birkhäuser (1997) pp. 195ff</td></tr></table> | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> I. Daubechies, "Ten lectures on wavelets" , SIAM (1992) pp. Chap. 1</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> D.C. Champeney, "A handbook of Fourier transforms" , Cambridge Univ. Press (1989)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> A.I. Saichev, W.A. Woyczyński, "Distributions in the physical and engineering sciences" , '''1: Distribution and fractal calculus, integral transforms and wavelets''' , Birkhäuser (1997) pp. 195ff</td></tr> | ||
+ | </table> |
Latest revision as of 07:33, 8 February 2024
A function used to restrict consideration of an arbitrary function or signal in some way. The terms time-frequency localization, time localization or frequency localization are often used in this context. For instance, the windowed Fourier transform is given by
\begin{equation*} ( F _ { \text{win} } f ) ( \omega , t ) = \int f ( s ) g ( s - t ) e ^ { - i \omega s } d s, \end{equation*}
where $g ( t )$ is a suitable window function. Quite often, scaled and translated versions of $g ( t )$ are considered at the same time, [a1], [a3]. An example is the Gabor transform. (See also Balian–Low theorem; Calderón-type reproducing formula.) Such window functions are also used in numerical analysis.
More specifically, the phrase window function refers to the function $r ( t )$ that equals $1$ on the interval $( - 1,1 )$ and zero elsewhere (at $- 1$ and $+ 1$ it is arbitrarily defined, usually $1/2$ or $0$). This function, as well as its scaled and translated versions, is also called the rectangle function or pulse function [a2], pp. 30, 35, 60, 61. However, the phrase "pulse function" is also sometimes used for the delta-function, see also Transfer function.
The Fourier transform of the specific rectangle function $r ( t )$ (with $r ( \pm 1 ) = 1 / 2$) is the function
\begin{equation*} g ( y ) = \left\{ \begin{array} { l l } { \frac { 1 } { \pi y } \operatorname { sin } 2 \pi y , } & { y \neq 0, } \\ { 2 , } & { y = 0, } \end{array} \right. \end{equation*}
a version of the sinc function ($\operatorname{sinc}( 0 ) = 1$, $\operatorname { sinc } ( x ) = x ^ { - 1 } \operatorname { sin } x$ for $x \neq 0$), see [a2], pp. 61, 104. In terms of the Heaviside function $H ( x )$ ($H ( x ) = 0$ for $x < 0$, $H ( 0 ) = 1 / 2$, $H ( x ) = 1$ for $x > 0$), $r ( x )$ is given by
\begin{equation*} r ( x ) = H ( x + 1 ) - H ( x - 1 ). \end{equation*}
There is also a relation with the Dirac delta-function $\delta ( x )$:
\begin{equation*} \operatorname { lim } _ { n \rightarrow \infty } \frac { n } { 2 } r ( n x ) = \delta ( x ). \end{equation*}
References
[a1] | I. Daubechies, "Ten lectures on wavelets" , SIAM (1992) pp. Chap. 1 |
[a2] | D.C. Champeney, "A handbook of Fourier transforms" , Cambridge Univ. Press (1989) |
[a3] | A.I. Saichev, W.A. Woyczyński, "Distributions in the physical and engineering sciences" , 1: Distribution and fractal calculus, integral transforms and wavelets , Birkhäuser (1997) pp. 195ff |
Window function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Window_function&oldid=55398