Difference between revisions of "Standard simplex"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 13: | Line 13: | ||
The [[Simplex|simplex]] $ \Delta ^ {n} $ | The [[Simplex|simplex]] $ \Delta ^ {n} $ | ||
of dimension $ n $ | of dimension $ n $ | ||
− | in the space $ \mathbf R ^ {n+} | + | in the space $ \mathbf R ^ {n+1} $ |
with vertices at the points $ e _ {i} = ( 0 \dots 1 \dots 0) $, | with vertices at the points $ e _ {i} = ( 0 \dots 1 \dots 0) $, | ||
$ i = 0 \dots n $( | $ i = 0 \dots n $( | ||
Line 21: | Line 21: | ||
$$ | $$ | ||
− | \Delta ^ {n} = \{ {( t _ {0} \dots t _ {n+} | + | \Delta ^ {n} = \{ {( t _ {0} \dots t _ {n+1} ) } : {0 \leq t _ {i} \leq 1, \sum t _ {i} = 1 } \} |
− | \subset \mathbf R ^ {n+} | + | \subset \mathbf R ^ {n+1} . |
$$ | $$ | ||
Line 54: | Line 54: | ||
$$ | $$ | ||
− | d _ {i} ( a _ {0} \dots a _ {m} ) = ( a _ {0} \dots a _ {i-} | + | d _ {i} ( a _ {0} \dots a _ {m} ) = ( a _ {0} \dots a _ {i-1} , \widehat{a} _ {i} , a _ {i+1} \dots a _ {m} ), |
$$ | $$ | ||
$$ | $$ | ||
− | s _ {i} ( a _ {0} \dots a _ {m} ) = ( a _ {0} \dots a _ {i} , a _ {i} , a _ {i+} | + | s _ {i} ( a _ {0} \dots a _ {m} ) = ( a _ {0} \dots a _ {i} , a _ {i} , a _ {i+1} \dots a _ {m} ), |
$$ | $$ | ||
Line 67: | Line 67: | ||
dimensional simplex of $ \Delta ^ {n} $) | dimensional simplex of $ \Delta ^ {n} $) | ||
is called the fundamental simplex of $ \Delta ^ {n} $. | is called the fundamental simplex of $ \Delta ^ {n} $. | ||
− | The smallest simplicial subset of $ \Delta ^ {n+} | + | The smallest simplicial subset of $ \Delta ^ {n+1} $ |
− | containing all simplices of the form $ d _ {i} \iota _ {n+} | + | containing all simplices of the form $ d _ {i} \iota _ {n+1} $ |
with $ i \neq k $ | with $ i \neq k $ | ||
is denoted by $ \Delta _ {k} ^ {n} $ | is denoted by $ \Delta _ {k} ^ {n} $ |
Latest revision as of 16:52, 20 January 2024
The simplex $ \Delta ^ {n} $
of dimension $ n $
in the space $ \mathbf R ^ {n+1} $
with vertices at the points $ e _ {i} = ( 0 \dots 1 \dots 0) $,
$ i = 0 \dots n $(
the $ 1 $
stands in the $ i $-
th place), i.e.
$$ \Delta ^ {n} = \{ {( t _ {0} \dots t _ {n+1} ) } : {0 \leq t _ {i} \leq 1, \sum t _ {i} = 1 } \} \subset \mathbf R ^ {n+1} . $$
For any topological space $ X $, the continuous mappings $ \sigma : \Delta ^ {n} \rightarrow X $ are the singular simplices of $ X $( see Singular homology).
The simplicial complex $ \Delta ^ {n} $ whose vertices are the points $ l _ {i} $, $ 0 \leq i \leq n $, while the simplices are arbitrary non-empty subsets of vertices. The geometric realization of this simplicial complex coincides with the standard simplex in the sense of 1).
The simplicial set $ \Delta ^ {n} $, obtained by applying the functor $ O ^ {+} $ to the simplicial scheme in 2), which is a contra-variant functor on the category $ \Delta $( see Simplicial object in a category), for which
$$ \Delta ^ {n} ([ m]) = \Delta ([ m], [ n]),\ \ \Delta ^ {n} ( \lambda )( \mu ) = \mu \lambda . $$
Thus, non-decreasing sequences $ ( a _ {0} \dots a _ {m} ) $ of numbers from $ [ n] $ are $ m $- dimensional simplices of the simplicial set $ \Delta ^ {n} $, while the face operators $ d _ {i} $ and the degeneracy operators $ s _ {i} $ of this simplicial set are defined by the formulas
$$ d _ {i} ( a _ {0} \dots a _ {m} ) = ( a _ {0} \dots a _ {i-1} , \widehat{a} _ {i} , a _ {i+1} \dots a _ {m} ), $$
$$ s _ {i} ( a _ {0} \dots a _ {m} ) = ( a _ {0} \dots a _ {i} , a _ {i} , a _ {i+1} \dots a _ {m} ), $$
where the sign $ \widehat{ {}} $ signifies that the symbol beneath it is deleted. The simplicial set $ \Delta ^ {1} $ is also called a simplicial segment. The simplex $ \iota _ {n} = ( 0, 1 \dots n) $( the unique non-degenerate $ n $- dimensional simplex of $ \Delta ^ {n} $) is called the fundamental simplex of $ \Delta ^ {n} $. The smallest simplicial subset of $ \Delta ^ {n+1} $ containing all simplices of the form $ d _ {i} \iota _ {n+1} $ with $ i \neq k $ is denoted by $ \Delta _ {k} ^ {n} $ and is called the $ k $- th standard horn.
For any simplicial set $ K $ and an arbitrary $ n $- dimensional simplex $ \sigma $ of $ K $, there is a unique simplicial mapping $ \chi _ \sigma : \Delta ^ {n} \rightarrow K $ for which $ \chi ( \iota _ {n} ) = \sigma $. This mapping is said to be characteristic for $ \sigma $.
The fundamental simplex $ \iota _ {n} $ of a simplicial set as in 3), which in this instance is denoted by $ \Delta _ {n} $.
Comments
For references see Simplicial set.
Standard simplex. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Standard_simplex&oldid=55249