Namespaces
Variants
Actions

Difference between revisions of "Star body"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
 
Line 73: Line 73:
  
 
====Comments====
 
====Comments====
Star bodies play an important role in the [[Geometry of numbers|geometry of numbers]], e.g. the Minkowski–Hlawka theorem.
+
Star bodies play an important role in the [[geometry of numbers]], ''e.g.'' the Minkowski–Hlawka theorem.
  
A set $ S $
+
A set $S$ in  $  \mathbf R  ^ {n} $
in  $  \mathbf R  ^ {n} $
 
 
is centrally symmetric if  $  x \in S $
 
is centrally symmetric if  $  x \in S $
 
implies  $  - x \in S $.
 
implies  $  - x \in S $.
Line 84: Line 83:
 
Here,  $  \Delta ( \mathfrak S ) $
 
Here,  $  \Delta ( \mathfrak S ) $
 
is the critical determinant of  $  \mathfrak S $(
 
is the critical determinant of  $  \mathfrak S $(
cf. [[Geometry of numbers|Geometry of numbers]]),  $  V( \mathfrak S ) $
+
cf. [[Geometry of numbers]]),  $  V( \mathfrak S ) $
 
is the volume of  $  \mathfrak S $
 
is the volume of  $  \mathfrak S $
and  $ \zeta ( n) = 1+ 2 ^ {-} n + 3 ^ {-} n + \dots $.  
+
and  $\zeta(n) = 1+ 2^{-n} + 3^{-n} + \dots $.  
This is an inequality in the opposite direction of the Minkowski convex body theorem (cf. [[Minkowski theorem|Minkowski theorem]]).
+
This is an inequality in the opposite direction of the Minkowski convex body theorem (cf. [[Minkowski theorem]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.M. Gruber,   C.G. Lekkerkerker,   "Geometry of numbers" , North-Holland  (1987)  pp. Sect. (iv)  (Updated reprint)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Erdös,   P.M. Gruber,   J. Hammer,   "Lattice points" , Longman  (1989)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  P.M. Gruber, C.G. Lekkerkerker, "Geometry of numbers" , North-Holland  (1987)  pp. Sect. (iv)  (Updated reprint)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Erdös, P.M. Gruber, J. Hammer, "Lattice points" , Longman  (1989)</TD></TR>
 +
</table>

Latest revision as of 20:42, 16 January 2024


with respect to a point $ O $, star-like body

An open set $ \mathfrak S $ in $ n $- dimensional Euclidean space $ \mathbf R ^ {n} $ which has the ray property (relative to $ O $): If $ a \in \overline{\mathfrak S}\; $, where $ \overline{\mathfrak S}\; $ is the closure of $ \mathfrak S $, then the entire segment $ [ O , a ) $( where $ O \in [ O , a ) $, $ a \notin [ O , a ) $) lies in $ \mathfrak S $. A star body $ \mathfrak S $ with centre $ O $ may be characterized as follows: $ O $ is an interior point of $ \mathfrak S $; every ray emanating from $ O $ lies either entirely in $ \mathfrak S $ or contains a point $ a $ such that the ray segment $ [ O , a ) $ lies in $ \mathfrak S $, but the ray segment $ ( a, + \infty ) $ lies outside $ \mathfrak S $. This definition is equivalent to the first one, up to points on the boundary of $ \mathfrak S $. A star body is a particular case of a star set with respect to $ O $, a set with the generalized ray property relative to $ O $: If $ a \in \mathfrak S $, then the entire segment $ [ O , a ] $ lies in $ \mathfrak S $. A particular case of a star body is a convex body.

With every star body $ \mathfrak S $ with respect to the origin $ O $ one can associate, in one-to-one fashion, a ray function $ F ( x ) = F _ {\mathfrak S} ( x ) $ such that $ \mathfrak S $ is the set of points $ x \in \mathbf R ^ {n} $ with $ F ( x ) < 1 $.

The correspondence is defined by the formula

$$ F ( x ) = \inf _ {\begin{array}{c} {tx \in \mathfrak S } \\ {t > 0 } \end{array} } \frac{1}{t} . $$

With this notation a star body $ \mathfrak S $ is bounded if and only if $ F ( x ) $ is a positive ray function; it is convex if and only if $ F ( x ) $ is a convex ray function.

References

[1] J.W.S. Cassels, "An introduction to the geometry of numbers" , Springer (1972)

Comments

Star bodies play an important role in the geometry of numbers, e.g. the Minkowski–Hlawka theorem.

A set $S$ in $ \mathbf R ^ {n} $ is centrally symmetric if $ x \in S $ implies $ - x \in S $.

The Minkowski–Hlawka theorem says that $ V ( \mathfrak S ) \geq 2 \zeta ( n) \Delta ( \mathfrak S ) $ for a centrally-symmetric star body $ \mathfrak S $. Here, $ \Delta ( \mathfrak S ) $ is the critical determinant of $ \mathfrak S $( cf. Geometry of numbers), $ V( \mathfrak S ) $ is the volume of $ \mathfrak S $ and $\zeta(n) = 1+ 2^{-n} + 3^{-n} + \dots $. This is an inequality in the opposite direction of the Minkowski convex body theorem (cf. Minkowski theorem).

References

[a1] P.M. Gruber, C.G. Lekkerkerker, "Geometry of numbers" , North-Holland (1987) pp. Sect. (iv) (Updated reprint)
[a2] P. Erdös, P.M. Gruber, J. Hammer, "Lattice points" , Longman (1989)
How to Cite This Entry:
Star body. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Star_body&oldid=55161
This article was adapted from an original article by A.V. Malyshev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article