Namespaces
Variants
Actions

Difference between revisions of "Hadamard variational formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
 
Line 20: Line 20:
 
- \sum _ { k = 1 } ^ { n }  \epsilon _ {k} \int\limits _ { 0 } ^ { {l _ k } }  
 
- \sum _ { k = 1 } ^ { n }  \epsilon _ {k} \int\limits _ { 0 } ^ { {l _ k } }  
 
\frac{
 
\frac{
\partial  g ( \phi _ {k} ( s ) , z ) }{\partial  n  ^ {(} k) }
+
\partial  g ( \phi _ {k} ( s ) , z ) }{\partial  n  ^ {(k)}}
 
   
 
   
 
\frac{
 
\frac{
 
\partial  g ( \phi _ {k} ( s ) , \zeta ) }{\partial  n
 
\partial  g ( \phi _ {k} ( s ) , \zeta ) }{\partial  n
  ^ {(} k) }
+
  ^ {(k)} }
 
  \phi _ {k} ( s )  ds + O ( \epsilon  ^ {2} )
 
  \phi _ {k} ( s )  ds + O ( \epsilon  ^ {2} )
 
$$
 
$$
Line 39: Line 39:
 
$  0 \leq  s \leq  l _ {k} $;  
 
$  0 \leq  s \leq  l _ {k} $;  
 
2) the numbers  $  \epsilon _ {k} > 0 $
 
2) the numbers  $  \epsilon _ {k} > 0 $
are so small that the ends of the segments of the interior normals $ n ^ {(} k) $
+
are so small that the ends of the segments of the interior normals $n^{(k)} $
 
to  $  \Gamma _ {k} $
 
to  $  \Gamma _ {k} $
 
of length  $  \epsilon _ {k} \phi _ {k} ( s ) $
 
of length  $  \epsilon _ {k} \phi _ {k} ( s ) $

Latest revision as of 20:37, 16 January 2024


The formula

$$ g ^ {*} ( z , \zeta ) = g ( z , \zeta ) + $$

$$ - \sum _ { k = 1 } ^ { n } \epsilon _ {k} \int\limits _ { 0 } ^ { {l _ k } } \frac{ \partial g ( \phi _ {k} ( s ) , z ) }{\partial n ^ {(k)}} \frac{ \partial g ( \phi _ {k} ( s ) , \zeta ) }{\partial n ^ {(k)} } \phi _ {k} ( s ) ds + O ( \epsilon ^ {2} ) $$

for the Green function $ g( z, \zeta ) $ of an $ n $- connected domain $ G $( $ n = 1, 2 , . . . $) in the complex $ z $- plane. Hadamard's variational formula is applicable if: 1) the boundary components $ \Gamma _ {k} = \{ {z } : {z = \phi _ {k} ( s) } \} $ of the domain $ G $ are twice-differentiable closed Jordan curves, where $ s $ is the arc length on $ \Gamma _ {k} $, $ 0 \leq s \leq l _ {k} $; 2) the numbers $ \epsilon _ {k} > 0 $ are so small that the ends of the segments of the interior normals $n^{(k)} $ to $ \Gamma _ {k} $ of length $ \epsilon _ {k} \phi _ {k} ( s ) $ lying in $ G $ form continuously-differentiable curves, bounding an $ n $- connected domain $ G ^ {*} $, $ \overline{ {G ^ {*} }}\; \subset G $; and 3) $ \zeta $ is a fixed point in $ G ^ {*} $. Hadamard's variational formula represents the Green function $ g ^ {*} ( z, \zeta ) $ of the domain $ G ^ {*} $ by $ g( z, \zeta ) $ with a uniform estimate $ O ( \epsilon ^ {2} ) $, $ \epsilon = \max \{ \epsilon _ {k} , 0\leq k \leq n \} $, of the remainder term in the direct product of the domain $ G ^ {*} $ and an arbitrary compact set in $ G $. Hadamard's variational formula can also be used for the Green function of a finite Riemann surface with boundary.

The formula was proposed by J. Hadamard [1].

References

[1] J. Hadamard, "Memoire sur le problème d'analyse relatif a l'équilibre des plagues élastiques eucastrées" Mém. prés. par divers savants à l'Acad. Sci. , 33 (1907) (Also: Oeuvres, Vol. II, C.N.R.S. (1968), pp. 515–631)
[2] M. Schiffer, D.C. Spencer, "Functionals of finite Riemann surfaces" , Princeton Univ. Press (1954)

Comments

For a proof of Hadamard's variational formula under minimal hypotheses, plus further references, see [a1].

References

[a1] S.E. Warschawski, "On Hadamard's variation formula for Green's function" J. Math. Mech. , 9 (1960) pp. 497–511
How to Cite This Entry:
Hadamard variational formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hadamard_variational_formula&oldid=55157
This article was adapted from an original article by I.A. Aleksandrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article