Difference between revisions of "Locally trivial fibre bundle"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 15: | Line 15: | ||
such that for any point of the base $ b \in B $ | such that for any point of the base $ b \in B $ | ||
there is a neighbourhood $ U \ni b $ | there is a neighbourhood $ U \ni b $ | ||
− | and a homeomorphism $ \phi _ {U} : U \times F \rightarrow \pi ^ {-} | + | and a homeomorphism $ \phi _ {U} : U \times F \rightarrow \pi ^ {-1} ( U) $ |
such that $ \pi \phi _ {U} ( u, f ) = u $, | such that $ \pi \phi _ {U} ( u, f ) = u $, | ||
where $ u \in U $, | where $ u \in U $, | ||
$ f \in F $. | $ f \in F $. | ||
− | The mapping $ h _ {U} = \phi _ {U} ^ {-} | + | The mapping $ h _ {U} = \phi _ {U} ^ {-1} $ |
is called a chart of the locally trivial bundle. The totality of charts $ \{ h _ {U} \} $ | is called a chart of the locally trivial bundle. The totality of charts $ \{ h _ {U} \} $ | ||
associated with a covering of the base $ \{ U \} $ | associated with a covering of the base $ \{ U \} $ | ||
Line 28: | Line 28: | ||
$$ | $$ | ||
h _ {U} ( g x ) = g h _ {U} ( x) ,\ \ | h _ {U} ( g x ) = g h _ {U} ( x) ,\ \ | ||
− | x \in \pi ^ {-} | + | x \in \pi ^ {-1} ( U) , |
$$ | $$ | ||
Line 36: | Line 36: | ||
For any locally trivial fibre bundle $ \pi : X \rightarrow B $ | For any locally trivial fibre bundle $ \pi : X \rightarrow B $ | ||
and continuous mapping $ f : B _ {1} \rightarrow B $ | and continuous mapping $ f : B _ {1} \rightarrow B $ | ||
− | the [[ | + | the [[induced fibre bundle]] is locally trivial. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.-T. Hu, "Homotopy theory" , Acad. Press (1959)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.-T. Hu, "Homotopy theory" , Acad. Press (1959)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR></table> |
Latest revision as of 20:28, 16 January 2024
A fibre bundle (cf. Fibre space) $ \pi : X \rightarrow B $
with fibre $ F $
such that for any point of the base $ b \in B $
there is a neighbourhood $ U \ni b $
and a homeomorphism $ \phi _ {U} : U \times F \rightarrow \pi ^ {-1} ( U) $
such that $ \pi \phi _ {U} ( u, f ) = u $,
where $ u \in U $,
$ f \in F $.
The mapping $ h _ {U} = \phi _ {U} ^ {-1} $
is called a chart of the locally trivial bundle. The totality of charts $ \{ h _ {U} \} $
associated with a covering of the base $ \{ U \} $
forms the atlas of the locally trivial bundle. For example, a principal fibre bundle with a locally compact space and a Lie group $ G $
is a locally trivial fibre bundle, and any chart $ h _ {U} $
satisfies the relation
$$ h _ {U} ( g x ) = g h _ {U} ( x) ,\ \ x \in \pi ^ {-1} ( U) , $$
where $ G $ acts on $ G \times U $ according to the formula $ g ( g ^ \prime , u ) = ( g g ^ \prime , u ) $. For any locally trivial fibre bundle $ \pi : X \rightarrow B $ and continuous mapping $ f : B _ {1} \rightarrow B $ the induced fibre bundle is locally trivial.
References
[1] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) |
[2] | N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951) |
[3] | S.-T. Hu, "Homotopy theory" , Acad. Press (1959) |
[4] | D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) |
Locally trivial fibre bundle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Locally_trivial_fibre_bundle&oldid=55149