Difference between revisions of "Poisson summation formula"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (latex details) |
||
Line 14: | Line 14: | ||
$$ | $$ | ||
− | \sum _ {k = - \infty } ^ | + | \sum _ {k = - \infty } ^ { +\infty } |
g ( 2 k \pi ) = \ | g ( 2 k \pi ) = \ | ||
− | \sum _ {k = - \infty } ^ | + | \sum _ {k = - \infty } ^ { +\infty } |
\frac{1}{2 \pi } | \frac{1}{2 \pi } | ||
− | \int\limits _ {- \infty } ^ | + | \int\limits _ {- \infty } ^ { +\infty } |
g ( x) e ^ {- i k x } d x . | g ( x) e ^ {- i k x } d x . | ||
$$ | $$ | ||
Line 30: | Line 30: | ||
$$ | $$ | ||
− | \sqrt {a } \sum _ {k = - \infty } ^ | + | \sqrt {a } \sum _ {k = - \infty } ^ { +\infty } g ( a k ) = \ |
− | \sqrt {b } \sum _ {k = - \infty } ^ | + | \sqrt {b } \sum _ {k = - \infty } ^ { +\infty } \chi ( b k ) , |
$$ | $$ | ||
Line 41: | Line 41: | ||
$$ | $$ | ||
− | \chi ( u) = | + | \chi ( u) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ {+ \infty } g(x) e ^ {- i u x } d x . |
− | |||
− | \frac{1}{\sqrt {2 \pi } } | ||
− | |||
− | \int\limits _ {- \infty } ^ | ||
− | g ( x) e ^ {- i u x } d x . | ||
$$ | $$ | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)</TD></TR> | ||
+ | </table> |
Latest revision as of 20:15, 16 January 2024
The formula
$$ \sum _ {k = - \infty } ^ { +\infty } g ( 2 k \pi ) = \ \sum _ {k = - \infty } ^ { +\infty } \frac{1}{2 \pi } \int\limits _ {- \infty } ^ { +\infty } g ( x) e ^ {- i k x } d x . $$
The Poisson summation formula holds if, for example, the function $ g $ is absolutely integrable on the interval $ ( - \infty , + \infty ) $, has bounded variation and $ 2 g ( x) = g ( x + 0 ) + g ( x - 0 ) $. The Poisson summation formula can also be written in the form
$$ \sqrt {a } \sum _ {k = - \infty } ^ { +\infty } g ( a k ) = \ \sqrt {b } \sum _ {k = - \infty } ^ { +\infty } \chi ( b k ) , $$
where $ a $ and $ b $ are any two positive numbers satisfying the condition $ a b = 2 \pi $, and $ \chi $ is the Fourier transform of the function $ g $:
$$ \chi ( u) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ {+ \infty } g(x) e ^ {- i u x } d x . $$
References
[1] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
[2] | E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948) |
Poisson summation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_summation_formula&oldid=55140