Difference between revisions of "Spectral density, estimator of the"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 17: | Line 17: | ||
$$ | $$ | ||
\sum _ {s , t = 1 } ^ { N } | \sum _ {s , t = 1 } ^ { N } | ||
− | b _ {s,t} ^ {( | + | b _ {s,t} ^ {(N)} X ( s) X ( t) , |
$$ | $$ | ||
− | where the $ b _ {s,t} ^ {( | + | where the $ b _ {s,t} ^ {(N)} $ |
are complex coefficients (depending on $ \lambda $). | are complex coefficients (depending on $ \lambda $). | ||
It can be shown that the asymptotic behaviour as $ N \rightarrow \infty $ | It can be shown that the asymptotic behaviour as $ N \rightarrow \infty $ | ||
− | of the first two moments of an estimator of the spectral density is satisfactory, in general, if one considers only the subclass of quadratic forms such that $ b _ {s _ {1} , t _ {1} } ^ {( | + | of the first two moments of an estimator of the spectral density is satisfactory, in general, if one considers only the subclass of quadratic forms such that $ b _ {s _ {1} , t _ {1} } ^ {(N)} = b _ {s _ {2} , t _ {2} } ^ {(N)} $ |
when $ s _ {1} - t _ {1} = s _ {2} - t _ {2} $. | when $ s _ {1} - t _ {1} = s _ {2} - t _ {2} $. | ||
This enables one to restrict attention to estimators of the spectral density of the form | This enables one to restrict attention to estimators of the spectral density of the form | ||
Line 29: | Line 29: | ||
$$ | $$ | ||
\widehat{f} _ {N} ( \lambda ) = | \widehat{f} _ {N} ( \lambda ) = | ||
− | \frac{1}{2 \pi } | + | \frac{1}{2 \pi } \sum _ {t = - N + 1 } ^ {N-1} e ^ {i t \lambda } b _ {N} ( t) B _ {N} ( t) , |
− | |||
− | \sum _ {t = - N + 1 } ^ { N- } | ||
− | e ^ {i t \lambda } b _ {N} ( t) B _ {N} ( t) , | ||
$$ | $$ | ||
Line 39: | Line 36: | ||
$$ | $$ | ||
B _ {N} ( t) = | B _ {N} ( t) = | ||
− | \frac{1}{N} | + | \frac{1}{N} \sum _{s=1}^ { {N } - | t | } |
− | |||
− | \sum _ { s= } | ||
X ( s) X ( s + | t | ) | X ( s) X ( s + | t | ) | ||
$$ | $$ | ||
Line 84: | Line 79: | ||
and $ A _ {N} \rightarrow \infty $ | and $ A _ {N} \rightarrow \infty $ | ||
as $ N \rightarrow \infty $, | as $ N \rightarrow \infty $, | ||
− | but $ A _ {N} N ^ {-} | + | but $ A _ {N} N ^ {-1} \rightarrow 0 $. |
Similarly, one considers coefficients $ b _ {N} ( t) $ | Similarly, one considers coefficients $ b _ {N} ( t) $ | ||
of the form | of the form | ||
$$ | $$ | ||
− | b _ {N} ( t) = K ( A _ {N} ^ {-} | + | b _ {N} ( t) = K ( A _ {N} ^ {-1} t ) |
$$ | $$ | ||
Latest revision as of 19:58, 16 January 2024
A function of the observed values $ X ( 1) \dots X ( N) $
of a discrete-time stationary stochastic process, used as an estimator of the spectral density $ f ( \lambda ) $.
As an estimator of the spectral density one often uses quadratic forms
$$ \sum _ {s , t = 1 } ^ { N } b _ {s,t} ^ {(N)} X ( s) X ( t) , $$
where the $ b _ {s,t} ^ {(N)} $ are complex coefficients (depending on $ \lambda $). It can be shown that the asymptotic behaviour as $ N \rightarrow \infty $ of the first two moments of an estimator of the spectral density is satisfactory, in general, if one considers only the subclass of quadratic forms such that $ b _ {s _ {1} , t _ {1} } ^ {(N)} = b _ {s _ {2} , t _ {2} } ^ {(N)} $ when $ s _ {1} - t _ {1} = s _ {2} - t _ {2} $. This enables one to restrict attention to estimators of the spectral density of the form
$$ \widehat{f} _ {N} ( \lambda ) = \frac{1}{2 \pi } \sum _ {t = - N + 1 } ^ {N-1} e ^ {i t \lambda } b _ {N} ( t) B _ {N} ( t) , $$
where
$$ B _ {N} ( t) = \frac{1}{N} \sum _{s=1}^ { {N } - | t | } X ( s) X ( s + | t | ) $$
is a sample estimator of the covariance function of the stationary process $ X ( t) $ and the $ b _ {N} ( t) $ are suitably chosen weights. The estimator $ \widehat{f} _ {N} ( \lambda ) $ can be written as
$$ \widehat{f} _ {N} ( \lambda ) = \ \int\limits _ {- \pi } ^ \pi \Phi _ {N} ( x) I _ {N} ( x + \lambda ) d x , $$
where $ I _ {N} ( x) $ is the periodogram and $ \Phi _ {N} ( x) $ is some continuous even function with $ 2N- 1 $ of its Fourier coefficients specified:
$$ b _ {N} ( t) = \int\limits _ {- \pi } ^ \pi \Phi _ {N} ( x) e ^ {i t x } d x ,\ \ t = - N + 1 \dots N - 1 . $$
The function $ \Phi _ {N} ( x) $ is called a spectral window; one usually considers spectral windows of the form
$$ \Phi _ {N} ( x) = A _ {N} \Phi ( A _ {N} x ) , $$
where $ \Phi ( x) $ is some continuous function on $ ( - \infty , \infty ) $ such that
$$ \int\limits _ {- \infty } ^ \infty \Phi ( x) d x = 1 , $$
and $ A _ {N} \rightarrow \infty $ as $ N \rightarrow \infty $, but $ A _ {N} N ^ {-1} \rightarrow 0 $. Similarly, one considers coefficients $ b _ {N} ( t) $ of the form
$$ b _ {N} ( t) = K ( A _ {N} ^ {-1} t ) $$
and a function $ K ( x) $, called a lag window or covariance window. Under weak smoothness restrictions on the spectral density $ f ( \lambda ) $, or assuming that $ X ( t) $ is mixing, it is possible to prove that for a wide class of spectral or covariance windows the estimator $ \widehat{f} _ {N} ( \lambda ) $ is asymptotically unbiased and consistent.
In the case of a multi-dimensional stochastic process, estimation of the elements of the matrix of spectral densities $ f _ {k,l} ( \lambda ) $ proceeds in a similar way using the corresponding periodogram $ I _ {N} ^ {( k , l ) } ( \lambda ) $. Instead of an estimator of the spectral density in the form of a quadratic form in the observations, one often assumes that the spectral density depends in a particular way on a finite number of parameters, and then one seeks estimators based on the observations of the parameters involved in this expression for the spectral density (see Maximum-entropy spectral estimator; Spectral estimator, parametric).
References
[1] | D.R. Brillinger, "Time series. Data analysis and theory" , Holt, Rinehart & Winston (1975) MR0443257 Zbl 0321.62004 |
[2] | E.J. Hannan, "Multiple time series" , Wiley (1972) MR0279952 Zbl 0279.62025 Zbl 0211.49804 |
[3] | T.M. Anderson, "Statistical analysis of time series" , Wiley (1971) MR0283939 Zbl 0225.62108 |
Comments
References
[a1] | G.E.P. Box, G.M. Jenkins, "Time series analysis. Forecasting and control" , Holden-Day (1960) MR0436499 MR0353595 MR0353594 MR0272138 Zbl 1154.62062 Zbl 0858.62072 Zbl 0363.62069 Zbl 0284.62059 Zbl 0276.62080 Zbl 0249.62009 |
[a2] | P.E. Caines, "Linear stochastic systems" , Wiley (1988) MR0944080 Zbl 0658.93003 |
[a3] | K.O. Dzhaparidze, "Parameter estimation and hypothesis testing in spectral analysis of stationary time series" , Springer (1986) MR0775857 MR0812272 Zbl 0584.62157 |
[a4] | L. Ljung, "System identification theory for the user" , Prentice-Hall (1987) MR1157156 Zbl 0615.93004 |
Spectral density, estimator of the. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectral_density,_estimator_of_the&oldid=55138