Namespaces
Variants
Actions

Difference between revisions of "Lens space"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
 
Line 12: Line 12:
  
 
A manifold of odd dimension that arises as the [[Orbit|orbit]] space of the isometric free action of a cyclic group  $  \mathbf Z _ {h} $
 
A manifold of odd dimension that arises as the [[Orbit|orbit]] space of the isometric free action of a cyclic group  $  \mathbf Z _ {h} $
on the sphere  $  S  ^ {2n-} 1 $(
+
on the sphere  $  S  ^ {2n-1} $(
cf. [[Action of a group on a manifold|Action of a group on a manifold]]). It is convenient to take for  $  S  ^ {2n-} 1 $
+
cf. [[Action of a group on a manifold|Action of a group on a manifold]]). It is convenient to take for  $  S  ^ {2n-1} $
 
the unit sphere in the complex space  $  \mathbf C  ^ {n} $
 
the unit sphere in the complex space  $  \mathbf C  ^ {n} $
 
in which a basis is fixed. Suppose that  $  \mathbf Z _ {h} $
 
in which a basis is fixed. Suppose that  $  \mathbf Z _ {h} $
Line 26: Line 26:
 
is invertible  $  \mathop{\rm mod}  h $)  
 
is invertible  $  \mathop{\rm mod}  h $)  
 
action of  $  \mathbf Z _ {h} $
 
action of  $  \mathbf Z _ {h} $
on  $  S  ^ {2n-} 1 $,  
+
on  $  S  ^ {2n-1} $,  
 
and any such action has this form described in a suitable coordinate system. The [[Reidemeister torsion|Reidemeister torsion]] corresponding to an  $  h $-
 
and any such action has this form described in a suitable coordinate system. The [[Reidemeister torsion|Reidemeister torsion]] corresponding to an  $  h $-
 
th root of unity  $  \zeta $
 
th root of unity  $  \zeta $
is defined for a lens space  $  L = S  ^ {2n-} 1 / \mathbf Z _ {h} $
+
is defined for a lens space  $  L = S  ^ {2n-1} / \mathbf Z _ {h} $
constructed in this way by the formula  $  \pm  \zeta  ^ {q} \prod _ {k=} ^ {n} ( \zeta ^ {l _ {k} } - 1 ) $.  
+
constructed in this way by the formula  $  \pm  \zeta  ^ {q} \prod_{k=1}^ {n} ( \zeta ^ {l _ {k} } - 1 ) $.  
 
Any piecewise-linear lens space  $  \overline{L}\; $
 
Any piecewise-linear lens space  $  \overline{L}\; $
 
homeomorphic to it must have equal (up to  $  \pm  \zeta  ^ {q} $)  
 
homeomorphic to it must have equal (up to  $  \pm  \zeta  ^ {q} $)  
Line 39: Line 39:
 
$  2 \leq  i \leq  2 n - 2 $),  
 
$  2 \leq  i \leq  2 n - 2 $),  
 
and the [[Fundamental group|fundamental group]] is equal to  $  \mathbf Z _ {h} $
 
and the [[Fundamental group|fundamental group]] is equal to  $  \mathbf Z _ {h} $
in view of the fact that the sphere  $  S  ^ {2n-} 1 $
+
in view of the fact that the sphere  $  S  ^ {2n-1} $
 
is the [[Universal covering|universal covering]] for  $  \overline{L}\; $.  
 
is the [[Universal covering|universal covering]] for  $  \overline{L}\; $.  
 
The homology of  $  L $
 
The homology of  $  L $
Line 47: Line 47:
 
in all dimensions from  $  2 $
 
in all dimensions from  $  2 $
 
to  $  2 n - 2 $
 
to  $  2 n - 2 $
and  $  H _ {0} ( L) = H _ {2n-} 1 ( L) = \mathbf Z $.  
+
and  $  H _ {0} ( L) = H _ {2n-1} ( L) = \mathbf Z $.  
 
The direct limit of the spaces  $  L $
 
The direct limit of the spaces  $  L $
 
gives an [[Eilenberg–MacLane space|Eilenberg–MacLane space]] of type  $  K ( \mathbf Z _ {h} , n ) $.  
 
gives an [[Eilenberg–MacLane space|Eilenberg–MacLane space]] of type  $  K ( \mathbf Z _ {h} , n ) $.  
Two lens spaces are homotopy equivalent if and only if the linking coefficients (cf. [[Linking coefficient|Linking coefficient]])  $  l ( a  ^ {j} , a  ^ {n-} j ) \in Q / \mathbf Z $
+
Two lens spaces are homotopy equivalent if and only if the linking coefficients (cf. [[Linking coefficient|Linking coefficient]])  $  l ( a  ^ {j} , a  ^ {n-j} ) \in Q / \mathbf Z $
 
coincide, where  $  a $
 
coincide, where  $  a $
 
is a generator of the two-dimensional cohomology group. By means of these invariants one can establish the existence of asymmetric manifolds among lens spaces.
 
is a generator of the two-dimensional cohomology group. By means of these invariants one can establish the existence of asymmetric manifolds among lens spaces.

Latest revision as of 18:39, 13 January 2024


A manifold of odd dimension that arises as the orbit space of the isometric free action of a cyclic group $ \mathbf Z _ {h} $ on the sphere $ S ^ {2n-1} $( cf. Action of a group on a manifold). It is convenient to take for $ S ^ {2n-1} $ the unit sphere in the complex space $ \mathbf C ^ {n} $ in which a basis is fixed. Suppose that $ \mathbf Z _ {h} $ acts on each coordinate $ z _ {k} $ by multiplying it by $ \zeta _ {k} = e ^ {2 \pi i m _ {k} / h } $, where $ m _ {k} $ is invertible modulo $ h $, that is, there are numbers $ l _ {k} $ such that $ m _ {k} l _ {k} \equiv 1 $( $ \mathop{\rm mod} h $). This specifies an isometric free (thanks to the condition that $ m _ {k} $ is invertible $ \mathop{\rm mod} h $) action of $ \mathbf Z _ {h} $ on $ S ^ {2n-1} $, and any such action has this form described in a suitable coordinate system. The Reidemeister torsion corresponding to an $ h $- th root of unity $ \zeta $ is defined for a lens space $ L = S ^ {2n-1} / \mathbf Z _ {h} $ constructed in this way by the formula $ \pm \zeta ^ {q} \prod_{k=1}^ {n} ( \zeta ^ {l _ {k} } - 1 ) $. Any piecewise-linear lens space $ \overline{L}\; $ homeomorphic to it must have equal (up to $ \pm \zeta ^ {q} $) torsion, and it turns out that the sets of numbers $ \{ l _ {k} \} $ and $ \{ \overline{l}\; _ {k} \} $ must coincide. Thus, these sets characterize lens spaces uniquely up to a piecewise-linear homeomorphism and even up to an isometry; on the other hand, by the topological invariance of the torsion, they also characterize lens spaces uniquely up to a homeomorphism. A lens space is aspherical up to dimension $ 2n - 2 $( that is, $ \pi _ {i} L = 0 $, $ 2 \leq i \leq 2 n - 2 $), and the fundamental group is equal to $ \mathbf Z _ {h} $ in view of the fact that the sphere $ S ^ {2n-1} $ is the universal covering for $ \overline{L}\; $. The homology of $ L $ coincides up to dimension $ 2 n - 2 $ with the homology of the group $ \mathbf Z _ {h} $, that is, it is equal to $ \mathbf Z _ {h} $ in all dimensions from $ 2 $ to $ 2 n - 2 $ and $ H _ {0} ( L) = H _ {2n-1} ( L) = \mathbf Z $. The direct limit of the spaces $ L $ gives an Eilenberg–MacLane space of type $ K ( \mathbf Z _ {h} , n ) $. Two lens spaces are homotopy equivalent if and only if the linking coefficients (cf. Linking coefficient) $ l ( a ^ {j} , a ^ {n-j} ) \in Q / \mathbf Z $ coincide, where $ a $ is a generator of the two-dimensional cohomology group. By means of these invariants one can establish the existence of asymmetric manifolds among lens spaces.

In the three-dimensional case lens spaces coincide with manifolds that have a Heegaard diagram of genus 1, and so they are Seifert manifolds (cf. Seifert manifold). It is convenient to represent the fundamental domain of the action of $ \mathbf Z _ {h} $ on $ S ^ {3} $ as a "lens" , i.e. the union of a spherical segment and its mirror image; this is how the name lens surface arose.

References

[1] H. Poincaré, , Selected work , 2 , Moscow (1972) pp. 728 (In Russian)
[2] G. de Rham, "Sur la théorie des intersections et les intégrales multiples" Comm. Math. Helv. , 4 (1932) pp. 151–154
[3] H. Seifert, W. Threlfall, "A textbook of topology" , Acad. Press (1980) (Translated from German)
[4] J.W. Milnor, O. Burlet, "Torsion et type simple d'homotopie" A. Haefliger (ed.) R. Narasimhan (ed.) , Essays on topology and related topics (Coll. Geneve, 1969) , Springer (1970) pp. 12–17
How to Cite This Entry:
Lens space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lens_space&oldid=55073
This article was adapted from an original article by A.V. Chernavskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article