Difference between revisions of "Lagrange interpolation formula"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 16: | Line 16: | ||
$$ \tag{1 } | $$ \tag{1 } | ||
− | L _ {n} ( x) = \ | + | L _ {n} ( x) = \sum_{i=0}^ { n } f ( x _ {i} ) \prod _ {j \neq i } |
\frac{x - x _ {j} }{x _ {i} - x _ {j} } | \frac{x - x _ {j} }{x _ {i} - x _ {j} } | ||
Line 23: | Line 23: | ||
When the $ x _ {i} $ | When the $ x _ {i} $ | ||
− | are equidistant, that is, $ x _ {1} - x _ {0} = \dots = x _ {n} - x _ {n-} | + | are equidistant, that is, $ x _ {1} - x _ {0} = \dots = x _ {n} - x _ {n-1} = h $, |
using the notation $ ( x - x _ {0} ) / h = t $ | using the notation $ ( x - x _ {0} ) / h = t $ | ||
one can reduce (1) to the form | one can reduce (1) to the form | ||
Line 36: | Line 36: | ||
$$ | $$ | ||
\times | \times | ||
− | \ | + | \sum_{i=0}^ { n } ( - 1 ) ^ {i} \left ( \begin{array}{c} |
n | n | ||
\\ | \\ | ||
Line 42: | Line 42: | ||
\end{array} | \end{array} | ||
\right ) | \right ) | ||
− | \frac{f ( x _ {i} ) }{t-} | + | \frac{f ( x _ {i} ) }{t-i} . |
− | |||
$$ | $$ | ||
Line 49: | Line 48: | ||
$$ | $$ | ||
− | ( - 1 ) ^ {n-} | + | ( - 1 ) ^ {n-i} \left ( \begin{array}{c} |
n \\ | n \\ | ||
i | i | ||
Line 85: | Line 84: | ||
$$ | $$ | ||
− | \omega _ {n} ( x) = \ | + | \omega _ {n} ( x) = \prod_{j=0}^ { n } ( x - x _ {j} ) . |
$$ | $$ | ||
Line 99: | Line 98: | ||
$$ | $$ | ||
| f ( x) - L _ {n} ( x) | \leq M | | f ( x) - L _ {n} ( x) | \leq M | ||
− | \frac{( b- a ) ^ {n+} | + | \frac{( b- a ) ^ {n+1}}{( n+ 1 )! |
− | 2 ^ {2n+} | + | 2 ^ {2n+1} } |
. | . | ||
$$ | $$ | ||
Line 134: | Line 133: | ||
$$ | $$ | ||
− | T _ {n} ( x) = \ | + | T _ {n} ( x) = \sum_{k=0}^ { n } y _ {k} \prod _ {j \neq k } |
\frac{\sin | \frac{\sin | ||
( x - x _ {j} ) / 2 }{\sin ( x _ {k} - x _ {j} ) / 2 } | ( x - x _ {j} ) / 2 }{\sin ( x _ {k} - x _ {j} ) / 2 } |
Revision as of 14:36, 13 January 2024
A formula for obtaining a polynomial of degree $ n $(
the Lagrange interpolation polynomial) that interpolates a given function $ f ( x) $
at nodes $ x _ {0} \dots x _ {n} $:
$$ \tag{1 } L _ {n} ( x) = \sum_{i=0}^ { n } f ( x _ {i} ) \prod _ {j \neq i } \frac{x - x _ {j} }{x _ {i} - x _ {j} } . $$
When the $ x _ {i} $ are equidistant, that is, $ x _ {1} - x _ {0} = \dots = x _ {n} - x _ {n-1} = h $, using the notation $ ( x - x _ {0} ) / h = t $ one can reduce (1) to the form
$$ \tag{2 } L _ {n} ( x) = L _ {n} ( x _ {0} + th ) = ( - 1 ) ^ {n} \frac{t ( t- 1 ) {} \dots ( t- n ) }{n!} \times $$
$$ \times \sum_{i=0}^ { n } ( - 1 ) ^ {i} \left ( \begin{array}{c} n \\ i \end{array} \right ) \frac{f ( x _ {i} ) }{t-i} . $$
In the expression (2), called the Lagrange interpolation formula for equidistant nodes, the coefficients
$$ ( - 1 ) ^ {n-i} \left ( \begin{array}{c} n \\ i \end{array} \right ) \frac{t ( t- 1 ) \dots ( t- n ) }{( t- i) n! } $$
of the $ f ( x _ {i} ) $ are called the Lagrange coefficients.
If $ f $ has a derivative of order $ n+ 1 $ on the interval $ [ a , b ] $, if all interpolation nodes lie in this interval and if for any point $ x \in [ a , b ] $ one defines
$$ \alpha _ {x} = \min \{ x _ {0} \dots x _ {n} , x \} ,\ \beta _ {x} = \max \{ x _ {0} \dots x _ {n} , x \} , $$
then a point $ \xi \in [ \alpha _ {x} , \beta _ {x} ] $ exists such that
$$ f ( x) - L _ {n} ( x) = \frac{f ^ { ( n+ 1 ) } ( \xi ) \omega _ {n} ( x) }{( n+ 1) ! } , $$
where
$$ \omega _ {n} ( x) = \prod_{j=0}^ { n } ( x - x _ {j} ) . $$
If the absolute value of the derivative $ f ^ { ( n+ 1 ) } $ is bounded on $ [ a , b ] $ by a constant $ M $ and if the interpolation nodes are chosen such that the roots of the Chebyshev polynomial of degree $ n+ 1 $ are mapped into these points under a linear mapping from $ [ - 1 , 1] $ onto $ [ a , b ] $, then for any $ x \in [ a , b ] $ one has
$$ | f ( x) - L _ {n} ( x) | \leq M \frac{( b- a ) ^ {n+1}}{( n+ 1 )! 2 ^ {2n+1} } . $$
If the interpolation nodes are complex numbers $ z _ {0} \dots z _ {n} $ and lie in some domain $ G $ bounded by a piecewise-smooth contour $ \gamma $, and if $ f $ is a single-valued analytic function defined on the closure of $ G $, then the Lagrange interpolation formula has the form
$$ L _ {n} ( z) = \frac{1}{2 \pi i } \int\limits _ \gamma \frac{\omega ( \zeta ) - \omega ( z) }{\omega ( \zeta ) ( \zeta - z ) } f ( \zeta ) d \zeta , $$
where
$$ f ( z) - L _ {n} ( z) = \frac{\omega ( z) }{2 \pi i } \int\limits _ \gamma \frac{f ( \zeta ) }{\omega ( \zeta ) ( z - \zeta ) } d \zeta . $$
The Lagrange interpolation formula for interpolation by means of trigonometric polynomials is:
$$ T _ {n} ( x) = \sum_{k=0}^ { n } y _ {k} \prod _ {j \neq k } \frac{\sin ( x - x _ {j} ) / 2 }{\sin ( x _ {k} - x _ {j} ) / 2 } , $$
which is a trigonometric polynomial of order $ n $ having prescribed values $ y _ {0} \dots y _ {n} $ at the given nodes $ x _ {0} \dots x _ {n} $.
The formula was proposed by J.L. Lagrange in 1795.
References
[1] | I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian) |
[2] | N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian) |
Comments
References
[a1] | P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126 |
[a2] | L.W. Johnson, R.D. Riess, "Numerical analysis" , Addison-Wesley (1977) |
[a3] | G.M. Phillips, P.J. Taylor, "Theory and applications of numerical analysis" , Acad. Press (1973) |
Lagrange interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lagrange_interpolation_formula&oldid=55045