Difference between revisions of "Meijer transform"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 14: | Line 14: | ||
$$ | $$ | ||
− | F( x) = \int\limits _ { 0 } ^ \infty e ^ {- | + | F( x) = \int\limits _ { 0 } ^ \infty e ^ {-xt/2} ( xt) ^ {- \mu - 1/2 } W _ {\mu + |
1/2, \nu } ( xt) f( t) dt, | 1/2, \nu } ( xt) f( t) dt, | ||
$$ | $$ | ||
where $ W _ {\mu , \nu } ( x) $ | where $ W _ {\mu , \nu } ( x) $ | ||
− | is the Whittaker function (cf. [[ | + | is the Whittaker function (cf. [[Whittaker functions]]). The corresponding inversion formula is |
$$ | $$ | ||
Line 31: | Line 31: | ||
$$ | $$ | ||
\times | \times | ||
− | \int\limits _ {\beta - i \lambda } ^ { \beta + i \lambda } e | + | \int\limits _ {\beta - i \lambda } ^ { \beta + i \lambda } e^ {xt/2} ( xt) ^ {\mu - 1/2 } W _ {\mu - 1/2, \nu } ( xt) F( x) dx. |
− | |||
$$ | $$ | ||
For $ \mu = \pm \nu $ | For $ \mu = \pm \nu $ | ||
− | the Meijer transform becomes the [[ | + | the Meijer transform becomes the [[Laplace transform]]; for $ \mu = - 1/2 $ |
it becomes the $ K _ \nu $- | it becomes the $ K _ \nu $- | ||
transform | transform | ||
Line 49: | Line 48: | ||
where $ K _ \nu ( x) $ | where $ K _ \nu ( x) $ | ||
− | is the [[ | + | is the [[Macdonald function]]. |
The Varma transform | The Varma transform |
Latest revision as of 13:26, 13 January 2024
$$ F( x) = \int\limits _ { 0 } ^ \infty e ^ {-xt/2} ( xt) ^ {- \mu - 1/2 } W _ {\mu + 1/2, \nu } ( xt) f( t) dt, $$
where $ W _ {\mu , \nu } ( x) $ is the Whittaker function (cf. Whittaker functions). The corresponding inversion formula is
$$ f( t) = \lim\limits _ {\lambda \rightarrow + \infty } \frac{1}{2 \pi i } \frac{\Gamma ( 1- \mu + \nu ) }{\Gamma ( 1+ 2 \nu ) } \times $$
$$ \times \int\limits _ {\beta - i \lambda } ^ { \beta + i \lambda } e^ {xt/2} ( xt) ^ {\mu - 1/2 } W _ {\mu - 1/2, \nu } ( xt) F( x) dx. $$
For $ \mu = \pm \nu $ the Meijer transform becomes the Laplace transform; for $ \mu = - 1/2 $ it becomes the $ K _ \nu $- transform
$$ F( x) = \frac{1}{\sqrt \pi } \int\limits _ { 0 } ^ \infty e ^ {-} xt/2 ( xt) ^ {1/2} K _ \nu \left ( \frac{xt}{2} \right ) f( t) dt, $$
where $ K _ \nu ( x) $ is the Macdonald function.
The Varma transform
$$ F( x) = \int\limits _ { 0 } ^ \infty ( xt) ^ {\nu - 1/2 } e ^ {-} xt/2 W _ {\mu , \nu } ( xt) f( t) dt $$
reduces to a Meijer transform.
The Meijer $ K $- transform (or the Meijer–Bessel transform) is the integral transform
$$ F( x) = \sqrt { \frac{2} \pi } \int\limits _ { 0 } ^ \infty K _ \nu ( xt) \sqrt xt f( t) dt. $$
If the function $ f $ is locally integrable on $ ( 0, \infty ) $, has bounded variation in a neighbourhood of the point $ t = t _ {0} > 0 $, and if the integral
$$ \int\limits _ { 0 } ^ \infty e ^ {- \beta t } | f( t) | dt,\ \ \beta > \alpha \geq 0, $$
converges, then the following inversion formula is valid:
$$ \frac{f( t _ {0} + 0) + f( t _ {0} - 0) }{2\ } = $$
$$ = \ \lim\limits _ {\lambda \rightarrow \infty } \frac{1}{i \sqrt {2 \pi } } \int\limits _ {\beta - i \lambda } ^ { \beta + i \lambda } I _ \nu ( t _ {0} x)( t _ {0} x) ^ {1/2} F( x) dx. $$
For $ \nu = \pm 1/2 $ the Meijer $ K $- transform turns into the Laplace transform.
The Meijer transform and Meijer $ K $- transform were introduced by C.S. Meijer in [1] and, respectively, .
References
[1] | C.S. Meijer, "Eine neue Erweiterung der Laplace Transformation I" Proc. Koninkl. Ned. Akad. Wet. , 44 (1941) pp. 727–737 |
[2a] | C.S. Meijer, "Ueber eine neue Erweiterung der Laplace Transformation I" Proc. Koninkl. Ned. Akad. Wet. , 43 (1940) pp. 599–608 |
[2b] | C.S. Meijer, "Ueber eine neue Erweiterung der Laplace Transformation II" Proc. Koninkl. Ned. Akad. Wet. , 43 (1940) pp. 702–711 |
[3] | Y.A. Brychkov, A.P. Prudnikov, "Integral transforms of generalized functions" , Gordon & Breach (1989) (Translated from Russian) |
[4] | V.A. Ditkin, A.P. Prudnikov, "Operational calculus" Progress in Math. , 1 (1968) pp. 1–75 Itogi Nauk. Mat. Anal. 1966 (1967) pp. 7–82 |
Meijer transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Meijer_transform&oldid=55041