Difference between revisions of "Vector function"
(latex details) |
(gather refs) |
||
Line 78: | Line 78: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.E. Kochin, "Vector calculus and fundamentals of tensor calculus" , Moscow (1965) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. Rashevskii, "A course of differential geometry" , Moscow (1956) (In Russian)</TD></TR | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.E. Kochin, "Vector calculus and fundamentals of tensor calculus" , Moscow (1965) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. Rashevskii, "A course of differential geometry" , Moscow (1956) (In Russian)</TD></TR> |
− | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Courant, F. John, "Introduction to calculus and analysis" , '''1''' , Wiley (Interscience) (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.E. Marsden, A.J. Tromba, "Vector calculus" , Freeman (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "Foundations of modern analysis" , Acad. Press (1960) (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Jeffrey, "Mathematics for scientists and engineers" , v. Nostrand-Reinhold (1989) pp. 493ff</TD></TR></table> | |
− | |||
− | |||
− | |||
− |
Latest revision as of 07:55, 9 January 2024
A function $ \mathbf r ( t) $
of an argument $ t $
whose values belong to a vector space $ V $.
A vector function with values in a finite-dimensional ( $ m $- dimensional) vector space $ V $ is completely determined by its components $ r _ {j} ( t) $, $ 1 \leq j \leq m $, with respect to some basis $ e _ {1} \dots e _ {m} $ of $ V $:
$$ \tag{1 } \mathbf r ( t) = \ \sum_{j=1} ^ { m } r _ {j} ( t) \mathbf e _ {j} . $$
A vector function is said to be continuous, differentiable, etc. (at a point or in a domain) if all functions $ r _ {j} ( t) $ are continuous, differentiable, etc. The following formulas are valid for a function $ \mathbf r ( t) $ of one variable:
$$ \tag{2 } \frac{d}{dt} \mathbf r ( t) = \ \lim\limits _ {h \rightarrow 0 } \frac{\mathbf r ( t+ h)- \mathbf r ( t) }{h} = \ \sum_{j=1}^ { m } r _ {j} ^ \prime ( t ) \mathbf e _ {j} , $$
$$ \tag{3 } \int\limits _ { t _ {0} } ^ { {t _ 1 } } \mathbf r ( t) dt = \sum_{j=1}^ { m } \left ( \int\limits _ { t _ {0} } ^ { {t _ 1 } } r _ {j} ( t) dt \right ) \mathbf e _ {j} , $$
$$ \mathbf r ( t) = \mathbf r ( t _ {0} ) + \sum_{k=1}^ { N } \frac{1}{k!} \mathbf r ^ {(} k) ( t _ {0} ) ( t- t _ {0} ) ^ {k} + $$
$$ + \frac{1}{N!} \int\limits _ {t _ {0} } ^ { t } ( t- \tau ) ^ {N} {\mathbf r } ^ {(} N+ 1) ( \tau ) d \tau $$
(Taylor's formula).
The set of vectors $ \mathbf r ( t) $( starting at zero in $ V $) is called the hodograph of the vector function. The first derivative $ \dot{\mathbf r} ( t) $ of a vector function of one real variable is a vector in $ V $ tangent to the hodograph at the point $ \mathbf r ( t) $. If $ \mathbf r ( t) $ describes the motion of a point mass, where $ t $ denotes the time, then $ \dot{\mathbf r} ( t) $ is the instantaneous velocity vector of the point at the time $ t $. The second derivative $ \dot{\mathbf r} dot ( t) $ is the acceleration vector of the point.
Partial derivatives and multiple integrals of vector functions of several variables are defined in analogy with formulas (2) and (3). See Vector analysis; Gradient; Divergence; Curl, for the concepts of vector analysis for vector functions.
In an infinite-dimensional normed vector space with a basis, the representation of a vector function in the form (1) is an infinite series, and a coordinate-wise definition of the operations of mathematical analysis involves difficulties connected with the concepts of convergence of series, the possibility of term-by-term differentiation and integration, etc.
References
[1] | N.E. Kochin, "Vector calculus and fundamentals of tensor calculus" , Moscow (1965) (In Russian) |
[2] | P.K. Rashevskii, "A course of differential geometry" , Moscow (1956) (In Russian) |
[a1] | R. Courant, F. John, "Introduction to calculus and analysis" , 1 , Wiley (Interscience) (1965) |
[a2] | J.E. Marsden, A.J. Tromba, "Vector calculus" , Freeman (1981) |
[a3] | J.A. Dieudonné, "Foundations of modern analysis" , Acad. Press (1960) (Translated from French) |
[a4] | A. Jeffrey, "Mathematics for scientists and engineers" , v. Nostrand-Reinhold (1989) pp. 493ff |
Vector function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vector_function&oldid=54944