Namespaces
Variants
Actions

Difference between revisions of "Kirchhoff method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(latex details)
 
Line 63: Line 63:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Hönl,  A.-W. Maue,  K. Westpfahl,  "Theorie der Beugung"  S. Flügge (ed.) , ''Handbuch der Physik'' , '''25/1''' , Springer  (1961)  pp. 218–573</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Hönl,  A.-W. Maue,  K. Westpfahl,  "Theorie der Beugung"  S. Flügge (ed.) , ''Handbuch der Physik'' , '''25/1''' , Springer  (1961)  pp. 218–573</TD></TR>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Rubinowicz,  "Die Beugungswelle in der Kirchhoffschen Theorie der Beugung" , PWN  (1957)</TD></TR></table>
====Comments====
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Rubinowicz,  "Die Beugungswelle in der Kirchhoffschen Theorie der Beugung" , PWN  (1957)</TD></TR></table>
 

Latest revision as of 16:22, 6 January 2024


A method for approximately solving problems in the theory of the diffraction of short waves; proposed by G.R. Kirchhoff. In its simplest version Kirchhoff's method amounts to the following: Let a wave process be described by the Helmholtz equation and consider the problem of the scattering of a plane wave by a convex surface $ \Sigma $ on which the classical (Dirichlet) boundary condition $ u \mid _ \Sigma = 0 $ holds. The solution reduces to finding a function $ u $ satisfying the Helmholtz equation $ ( \Delta + k ^ {2} ) u = 0 $ subject to the indicated boundary condition and representable as the sum $ u = e ^ {ikx _ {1} } + U $, where $ U $ satisfies the Sommerfeld radiation conditions. The solution of the problem exists and it has the integral representation

$$ \tag{1 } u ( x) = e ^ {ik x _ {1} } - \frac{1}{4 \pi } \int\limits _ \Sigma \frac{\partial u ( x ^ \prime ) }{\partial n _ {x ^ \prime } } \frac{e ^ {ik | x - x ^ \prime | } }{| x - x ^ \prime | } d \Sigma _ {x ^ \prime } , $$

$$ x = ( x _ {1} , x _ {2} , x _ {3} ) ,\ x ^ \prime = \ ( x _ {1} ^ \prime , x _ {2} ^ \prime , x _ {3} ^ \prime ) , $$

$$ | x - x ^ \prime | = \sqrt {\sum _{i=1}^ { 3 } ( x _ {i} - x _ {i} ^ \prime ) ^ {2} } , $$

where $ \partial / \partial n _ {x ^ \prime } $ is the derivative along the normal to $ \Sigma $. The normal is taken outward relative to the infinite domain bounded internally by $ \Sigma $. It is assumed that on the part of $ \Sigma $ illuminated by the plane wave $ e ^ {ikx _ {1} } $, $ \partial u / \partial n _ {x ^ \prime } $ is approximately equal to the expression obtained by the ray method. On the shadowed part one sets $ \partial u ( x ^ \prime ) / \partial n _ {x ^ \prime } = 0 $. The expression $ u _ {K} $ obtained in this way is called the Kirchhoff approximation for $ u $.

In the illuminated region, $ u _ {K} $ and the geometric approximation for $ u $ are the same in their principal terms. In a neighbourhood of the boundary between the illuminated and shadowed zones, the principal term of the asymptotic expansion of $ u _ {K} $ is expressed in terms of the Fresnel integral $ \int _ {0} ^ \infty e ^ {i \alpha ^ {2} } d \alpha $, and in the shadowed zone $ u _ {K} = O ( 1/ k ) $( in fact in the shadowed zone $ u $ decreases considerably faster than $ 1 / k $).

The Kirchhoff method gives a formula for $ u $ that is correct in the principal terms and remains correct as $ | x | \rightarrow \infty $. In the subsequent orders in $ k $ the Kirchhoff approximation is no longer applicable.

References

[1] H. Hönl, A.-W. Maue, K. Westpfahl, "Theorie der Beugung" S. Flügge (ed.) , Handbuch der Physik , 25/1 , Springer (1961) pp. 218–573
[a1] A. Rubinowicz, "Die Beugungswelle in der Kirchhoffschen Theorie der Beugung" , PWN (1957)
How to Cite This Entry:
Kirchhoff method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kirchhoff_method&oldid=54900
This article was adapted from an original article by V.M. Babich (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article