Namespaces
Variants
Actions

Difference between revisions of "Chebyshev polynomials"

From Encyclopedia of Mathematics
Jump to: navigation, search
(latex details)
 
Line 187: Line 187:
 
$$  
 
$$  
 
U _ {n} ( x)  =   
 
U _ {n} ( x)  =   
\frac{1}{n+}
+
\frac{1}{n+1} T _ {n+ 1} ^ { \prime } ( x)  =  \sin  [ ( n
1 T _ {n+} 1 ^ { \prime } ( x)  =  \sin  [ ( n
 
 
+ 1 )  { \mathop{\rm arc}  \cos }  x ]  
 
+ 1 )  { \mathop{\rm arc}  \cos }  x ]  
\frac{1}{\sqrt {1 - x  ^ {2} } }
+
\frac{1}{\sqrt {1 - x  ^ {2} } } .
.
 
 
$$
 
$$
  

Latest revision as of 16:20, 6 January 2024


of the first kind

Polynomials that are orthogonal on the interval [ - 1 , 1 ] with the weight function

h _ {1} ( x) = \frac{1}{\sqrt {1 - x ^ {2} }} ,\ \ x \in ( - 1 , 1 ) .

For the standardized Chebyshev polynomials one has the formula

T _ {n} ( x) = \cos ( n \mathop{\rm arc} \cos x ) ,\ \ x \in [ - 1 , 1 ] ,

and the recurrence relation

T _ {n+1} ( x) = 2 x T _ {n} ( x) - T _ {n-1} ( x) ,

by which one can determine the sequence

T _ {0} ( x) = 1 ,\ T _ {1} ( x) = x ,\ \ T _ {2} ( x) = 2 x ^ {2} - 1 ,

T _ {3} ( x) = 4 x ^ {3} - 3 x ,\ T _ {4} ( x) = 8 x ^ {4} - 8 x ^ {2} + 1 ,

T _ {5} ( x) = 16 x ^ {5} - 20 x ^ {3} + 5 x , . . . .

The orthonormalized Chebyshev polynomials are:

\widehat{T} _ {0} ( x) = \frac{1}{\sqrt \pi } T _ {0} ( x) = \frac{1}{\sqrt \pi } ,

\widehat{T} _ {n} ( x) = \sqrt { \frac{2} \pi } T _ {n} ( x) = \sqrt { \frac{2} \pi } \cos ( n \mathop{\rm arc} \cos x ) ,\ n \geq 1 .

The leading coefficient of T _ {n} ( x) , for n \geq 1 , is 2 ^ {n-1} . Hence Chebyshev polynomials with leading coefficient 1 are defined by the formula

\widetilde{T} _ {n} ( x) = \frac{1}{2 ^ {n- 1} } T _ {n} ( x) = \ \frac{1}{2 ^ {n- 1} } \cos ( n { \mathop{\rm arc} \cos } x ) ,\ \ n \geq 1 .

The zeros of T _ {n} ( x) , given by

x _ {k} ^ {( n)} = \cos \frac{2 k - 1 }{2n} \pi ,\ \ k = 1 \dots n ,

frequently occur as interpolation nodes in quadrature formulas. The polynomial T _ {n} ( x) is a solution of the differential equation

( 1 - x ^ {2} ) y ^ {\prime\prime} - x y ^ \prime + n ^ {2} y = 0 .

The polynomials \widetilde{T} _ {n} ( x) deviate as least as possible from zero on the interval [ - 1 , 1 ] , that is, for any other polynomial \widetilde{F} _ {n} ( x) of degree n with leading coefficient 1 one has the following condition

\max _ {x \in [ - 1 , 1 ] } | \widetilde{F} _ {n} ( x) | > \ \max _ {x \in [ - 1 , 1 ] } | \widetilde{T} _ {n} ( x) | = \frac{1}{2 ^ {n- 1} } .

On the other hand, for any polynomial Q _ {n} ( x) of degree n or less and satisfying

\max _ {x \in [ - 1 , 1 ] } \ | Q _ {n} ( x) | = 1 ,

one has, for any x _ {0} \in ( - \infty , - 1 ) \cup ( 1 , \infty ) , the inequality

| Q ( x _ {0} ) | \leq | T _ {n} ( x _ {0} ) | .

If a function f is continuous on the interval [ - 1 , 1 ] and if its modulus of continuity \omega ( \delta , f ) satisfies the Dini condition

\lim\limits _ {\delta \rightarrow 0 } \omega ( \delta , f ) \ \mathop{\rm ln} \frac{1} \delta = 0 ,

then this function can be expanded in a Fourier–Chebyshev series,

f ( x) = \sum _{n=0} ^ \infty a _ {n} \widehat{T} _ {n} ( x) ,\ \ x \in [ - 1 , 1 ] ,

which converges uniformly on [ - 1 , 1 ] . The coefficients in this series are defined by the formula

a _ {n} = \int\limits _ { - 1} ^ { 1 } f ( t) \widehat{T} _ {n} ( t) \frac{dt}{\sqrt {1- t ^ {2} } } .

If the function f is p - times continuously differentiable on [ - 1 , 1 ] and if its p - th derivative f ^ {(} p) satisfies a Lipschitz condition of order \alpha , i.e. f ^ {(} p) \in \mathop{\rm Lip} \alpha , then one has the inequality

\left | f ( x) - \sum _{k=0} ^ { n } a _ {k} \widehat{T} _ {k} ( x) \right | \leq \frac{c _ {1} \mathop{\rm ln} n }{n ^ {p + \alpha } } ,\ \ x \in [ - 1 , 1 ] ,

where the constant c _ {1} does not depend on n and x .

Chebyshev polynomials of the second kind are defined by

U _ {n} ( x) = \frac{1}{n+1} T _ {n+ 1} ^ { \prime } ( x) = \sin [ ( n + 1 ) { \mathop{\rm arc} \cos } x ] \frac{1}{\sqrt {1 - x ^ {2} } } .

These polynomials are orthogonal on the interval [ - 1 , 1 ] with weight function

h _ {2} ( x) = \sqrt {1 - x ^ {2} } ,\ \ x \in [ - 1 , 1 ] .

For any polynomial \widetilde{Q} _ {n} ( x) with leading coefficient 1 one has the inequality

\frac{1}{2 ^ {n-} 1 } = \int\limits _ { - 1} ^ { 1 } | \widetilde{U} _ {n} ( x) | dx \leq \int\limits _ { - 1} ^ { 1 } | \widetilde{Q} _ {n} ( x) | dx .

The Chebyshev polynomials were introduced in 1854 by P.L. Chebyshev (cf. [1]). Both systems of Chebyshev polynomials are special cases of ultraspherical polynomials and Jacobi polynomials.

References

[1] P.L. Chebyshev, , Collected works , 2 , Moscow-Leningrad (1947) pp. 23–51 (In Russian)
[2] G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)
How to Cite This Entry:
Chebyshev polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chebyshev_polynomials&oldid=54898
This article was adapted from an original article by P.K. Suetin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article