Difference between revisions of "Riesz convexity theorem"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 16: | Line 16: | ||
$$ | $$ | ||
− | \ | + | \sum_{i=1} ^ { m } \sum_{j=1} ^ { n } a _ {ij} x _ {i} y _ {j} $$ |
on the set | on the set | ||
$$ | $$ | ||
− | \ | + | \sum_{i=1} ^ { m } | x _ {i} | ^ {1/ \alpha } \leq 1,\ \ |
− | \ | + | \sum_{j=1} ^ { m } | y _ {j} | ^ {1/ \beta } \leq 1 |
$$ | $$ | ||
Line 83: | Line 83: | ||
the continuity of the operator , | the continuity of the operator T: L _ {p _ {t} } \rightarrow L _ {q _ {t} } , | ||
t \in ( 0, 1) , | t \in ( 0, 1) , | ||
− | under weaker assumptions than those of the Riesz–Thorin theorem. See also [[ | + | under weaker assumptions than those of the Riesz–Thorin theorem. See also [[Interpolation of operators]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Riesz, "Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires" ''Acta Math.'' , '''49''' (1926) pp. 465–497</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.O. Thorin, "An extension of a convexity theorem due to M. Riesz" ''K. Fysiogr. Saallskap. i Lund Forh.'' , '''8''' : 14 (1936)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J. Marcinkiewicz, "Sur l'interpolation d'opérateurs" ''C.R. Acad. Sci. Paris'' , '''208''' (1939) pp. 1272–1273</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.K. Krein, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> H. Triebel, "Interpolation theory" , Springer (1978)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Riesz, "Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires" ''Acta Math.'' , '''49''' (1926) pp. 465–497</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.O. Thorin, "An extension of a convexity theorem due to M. Riesz" ''K. Fysiogr. Saallskap. i Lund Forh.'' , '''8''' : 14 (1936)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J. Marcinkiewicz, "Sur l'interpolation d'opérateurs" ''C.R. Acad. Sci. Paris'' , '''208''' (1939) pp. 1272–1273</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.K. Krein, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> H. Triebel, "Interpolation theory" , Springer (1978)</TD></TR></table> |
Latest revision as of 13:00, 6 January 2024
The logarithm, \mathop{\rm ln} M( \alpha , \beta ) ,
of the least upper bound of the modulus M( \alpha , \beta )
of the bilinear form
\sum_{i=1} ^ { m } \sum_{j=1} ^ { n } a _ {ij} x _ {i} y _ {j}
on the set
\sum_{i=1} ^ { m } | x _ {i} | ^ {1/ \alpha } \leq 1,\ \ \sum_{j=1} ^ { m } | y _ {j} | ^ {1/ \beta } \leq 1
(if \alpha = 0 or \beta = 0 , then, respectively, | x _ {i} | \leq 1 , i = 1 \dots m or | y _ {j} | \leq 1 , j = 1 \dots n ) is a convex function (of a real variable) of the parameters \alpha and \beta in the domain \alpha \geq 0 , \beta \geq 0 if the form is real ( a _ {ij} , x _ {i} , y _ {j} \in \mathbf R _ {+} ) , and it is a convex function (of a real variable) in the domain 0 \leq \alpha , \beta \leq 1 , \alpha + \beta \geq 1 if the form is complex ( a _ {ij} , x _ {i} , y _ {j} \in \mathbf C ) . This theorem was proved by M. Riesz [1].
A generalization of this theorem to linear operators is (see [3]): Let L _ {p} , 1 \leq p \leq \infty , be the set of all complex-valued functions on some measure space that are summable to the p - th power for 1 \leq p < \infty and that are essentially bounded for p = \infty . Let, further, T: L _ {p _ {i} } \rightarrow L _ {q _ {i} } , 1 \leq p _ {i} , q _ {j} \leq \infty , i = 0, 1 , be a continuous linear operator. Then T is a continuous operator from L _ {p _ {t} } to L _ {q _ {t} } , where
\frac{1}{p _ {t} } = 1- \frac{t}{p _ {0} } + \frac{t}{p _ {1} } ,\ \ \frac{1}{q _ {t} } = 1- \frac{t}{q _ {0} } + \frac{t}{q _ {1} } ,\ \ t \in [ 0, 1],
and where the norm k _ {t} of T ( as an operator from L _ {p _ {t} } to L _ {q _ {t} } ) satisfies the inequality k _ {t} \leq k _ {0} ^ {1-} t k _ {1} ^ {t} ( i.e. it is a logarithmically convex function). This theorem is called the Riesz–Thorin interpolation theorem, and sometimes also the Riesz convexity theorem [4].
The Riesz convexity theorem is at the origin of a whole trend of analysis in which one studies interpolation properties of linear operators. Among the first generalizations of the Riesz convexity theorem is the Marcinkiewicz interpolation theorem [5], which ensures for 1 \leq p _ {i} \leq q _ {i} \leq \infty , i = 0, 1 , the continuity of the operator T: L _ {p _ {t} } \rightarrow L _ {q _ {t} } , t \in ( 0, 1) , under weaker assumptions than those of the Riesz–Thorin theorem. See also Interpolation of operators.
References
[1] | M. Riesz, "Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires" Acta Math. , 49 (1926) pp. 465–497 |
[2] | G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934) |
[3] | G.O. Thorin, "An extension of a convexity theorem due to M. Riesz" K. Fysiogr. Saallskap. i Lund Forh. , 8 : 14 (1936) |
[4] | E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971) |
[5] | J. Marcinkiewicz, "Sur l'interpolation d'opérateurs" C.R. Acad. Sci. Paris , 208 (1939) pp. 1272–1273 |
[6] | S.K. Krein, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian) |
[7] | H. Triebel, "Interpolation theory" , Springer (1978) |
Riesz convexity theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riesz_convexity_theorem&oldid=54883