Namespaces
Variants
Actions

Difference between revisions of "Minimal property"

From Encyclopedia of Mathematics
Jump to: navigation, search
(gather refs)
(latex details)
 
Line 14: Line 14:
  
 
For any function  $  f \in L _ {2} [ a , b ] $,  
 
For any function  $  f \in L _ {2} [ a , b ] $,  
any orthonormal system  $  \{ \phi _ {k} \} _ {k=} 1 ^  \infty  $
+
any orthonormal system  $  \{ \phi _ {k} \}_{k=1}  ^  \infty  $
 
on  $  [ a , b ] $
 
on  $  [ a , b ] $
 
and for any  $  n $,  
 
and for any  $  n $,  
Line 21: Line 21:
 
$$  
 
$$  
 
\inf _
 
\inf _
{\{ a _ {k} \} _ {k=} 1 ^ {n} } \  
+
{\{ a _ {k} \}_{k=1}  ^ {n} } \  
 
\int\limits _ { a } ^ { b }  
 
\int\limits _ { a } ^ { b }  
\left | f ( x) - \sum _ { k= } 1 ^ { n }  a _ {k} \phi _ {k} ( x) \  
+
\left | f ( x) - \sum_{k=1} ^ { n }  a _ {k} \phi _ {k} ( x) \  
 
\right |  ^ {2}  d x =
 
\right |  ^ {2}  d x =
 
$$
 
$$
Line 36: Line 36:
 
$$  
 
$$  
 
S _ {n} ( f , x )  = \  
 
S _ {n} ( f , x )  = \  
\sum _ { k= } 1 ^ { n }  
+
\sum_{k=1}^ { n }  
 
c _ {k} ( f  ) \phi _ {k} ( x)
 
c _ {k} ( f  ) \phi _ {k} ( x)
 
$$
 
$$
Line 60: Line 60:
 
$$  
 
$$  
 
= \  
 
= \  
\int\limits _ { a } ^ { b }  f ^ { 2 } ( x)  d x - \sum _ { k= } 1 ^ { n }  | c _ {k} ( f  ) |  ^ {2} ,\  n = 1 , 2 ,\dots .
+
\int\limits _ { a } ^ { b }  f ^ { 2 } ( x)  d x - \sum_{k=1} ^ { n }  | c _ {k} ( f  ) |  ^ {2} ,\  n = 1 , 2 ,\dots .
 
$$
 
$$
  
Bessel's inequality, Parseval's equality for complete systems and also certain other basic properties of orthogonal expansions essentially are corollaries of this equality (cf. [[Bessel inequality|Bessel inequality]]; [[Parseval equality|Parseval equality]]; [[Complete system of functions|Complete system of functions]]; [[Orthogonal series|Orthogonal series]]; [[Orthogonal system|Orthogonal system]]).
+
Bessel's inequality, Parseval's equality for complete systems and also certain other basic properties of orthogonal expansions essentially are corollaries of this equality (cf. [[Bessel inequality]]; [[Parseval equality]]; [[Complete system of functions|Complete system of functions]]; [[Orthogonal series|Orthogonal series]]; [[Orthogonal system]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  S.V. Fomin,  "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock  (1957–1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Kaczmarz,  H. Steinhaus,  "Theorie der Orthogonalreihen" , Chelsea, reprint  (1951)</TD></TR>
+
<table>
<TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Yosida,  "Functional analysis" , Springer  (1978)  pp. Sect. III.4</TD></TR></table>
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  S.V. Fomin,  "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock  (1957–1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Kaczmarz,  H. Steinhaus,  "Theorie der Orthogonalreihen" , Chelsea, reprint  (1951)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Yosida,  "Functional analysis" , Springer  (1978)  pp. Sect. III.4</TD></TR>
 +
</table>

Latest revision as of 12:37, 6 January 2024


of the partial sums of an orthogonal expansion

For any function $ f \in L _ {2} [ a , b ] $, any orthonormal system $ \{ \phi _ {k} \}_{k=1} ^ \infty $ on $ [ a , b ] $ and for any $ n $, the equality

$$ \inf _ {\{ a _ {k} \}_{k=1} ^ {n} } \ \int\limits _ { a } ^ { b } \left | f ( x) - \sum_{k=1} ^ { n } a _ {k} \phi _ {k} ( x) \ \right | ^ {2} d x = $$

$$ = \ \int\limits _ { a } ^ { b } | f ( x) - S _ {n} ( f , x ) | ^ {2} d x $$

holds, where

$$ S _ {n} ( f , x ) = \ \sum_{k=1}^ { n } c _ {k} ( f ) \phi _ {k} ( x) $$

is the $ n $- th partial sum of the expansion of $ f $ with respect to the system $ \{ \phi _ {k} \} $, that is,

$$ c _ {k} ( f ) = \ \int\limits _ { a } ^ { b } f ( x) \phi _ {k} ( x) d x . $$

The minimum is attained precisely at the sum $ S _ {n} ( f , x ) $ and

$$ \int\limits _ { a } ^ { b } | f ( x) - S _ {n} ( f , x ) | ^ {2} d x = $$

$$ = \ \int\limits _ { a } ^ { b } f ^ { 2 } ( x) d x - \sum_{k=1} ^ { n } | c _ {k} ( f ) | ^ {2} ,\ n = 1 , 2 ,\dots . $$

Bessel's inequality, Parseval's equality for complete systems and also certain other basic properties of orthogonal expansions essentially are corollaries of this equality (cf. Bessel inequality; Parseval equality; Complete system of functions; Orthogonal series; Orthogonal system).

References

[1] A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian)
[2] S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)
[a1] K. Yosida, "Functional analysis" , Springer (1978) pp. Sect. III.4
How to Cite This Entry:
Minimal property. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minimal_property&oldid=54869
This article was adapted from an original article by A.A. Talalyan (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article