Namespaces
Variants
Actions

Difference between revisions of "Pseudo algebraically closed field"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
(→‎References: isbn link)
 
Line 10: Line 10:
  
 
====References====
 
====References====
* Fried, Michael D.; Jarden, Moshe ''Field arithmetic'' (3rd revised ed.) Ergebnisse der Mathematik und ihrer Grenzgebiete. 3e Folge '''11''' Springer (2008) ISBN 978-3-540-77269-9 {{ZBL|1145.12001}}
+
* Fried, Michael D.; Jarden, Moshe ''Field arithmetic'' (3rd revised ed.) Ergebnisse der Mathematik und ihrer Grenzgebiete. 3e Folge '''11''' Springer (2008) {{ISBN|978-3-540-77269-9}} {{ZBL|1145.12001}}
 
* Jarden, Moshe; Razon, Aharon ''Pseudo algebraically closed fields over rings'' Isr. J. Math. '''86''' (1994) 25-59 {{DOI|10.1007/BF02773673}} {{ZBL|0802.12007}}
 
* Jarden, Moshe; Razon, Aharon ''Pseudo algebraically closed fields over rings'' Isr. J. Math. '''86''' (1994) 25-59 {{DOI|10.1007/BF02773673}} {{ZBL|0802.12007}}

Latest revision as of 09:02, 26 November 2023


PAC field

A field $K$ for which every non-empty algebraic variety defined over $K$ has a $K$-rational point. Clearly an algebraically closed field is PAC. The Brauer group of a PAC field is trivial.

More generally, let $O$ be a subset of $K$. The field $K$ is said to be PAC over $O$ if for every affine absolutely irreducible variety $V$ of dimension $n\ge0$ and for each dominating separable rational map $\phi : V \rightarrow A^r$ over $K$ there exists $a \in V(K)$ such that $\phi(a) \in O^r$. Each PAC field is PAC over itself.

See also Quasi-algebraically closed field.

References

  • Fried, Michael D.; Jarden, Moshe Field arithmetic (3rd revised ed.) Ergebnisse der Mathematik und ihrer Grenzgebiete. 3e Folge 11 Springer (2008) ISBN 978-3-540-77269-9 Zbl 1145.12001
  • Jarden, Moshe; Razon, Aharon Pseudo algebraically closed fields over rings Isr. J. Math. 86 (1994) 25-59 DOI 10.1007/BF02773673 Zbl 0802.12007
How to Cite This Entry:
Pseudo algebraically closed field. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo_algebraically_closed_field&oldid=54724