Namespaces
Variants
Actions

Difference between revisions of "Fréchet metric"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Fréchet metric)
 
(→‎References: isbn link)
 
Line 9: Line 9:
  
 
==References==
 
==References==
* Steen, Lynn Arthur; Seebach, J.Arthur jun. ''Counterexamples in topology'' (2nd ed.) Springer (1978) ISBN 0-387-90312-7 {{ZBL|0386.54001}}
+
* Steen, Lynn Arthur; Seebach, J.Arthur jun. ''Counterexamples in topology'' (2nd ed.) Springer (1978) {{ISBN|0-387-90312-7}} {{ZBL|0386.54001}}

Latest revision as of 08:50, 26 November 2023

2020 Mathematics Subject Classification: Primary: 54E35 [MSN][ZBL]

A metric which can be placed on a countable product of metric spaces . If $(X_i,d_i)$ is a countable sequence of metric spaces with uniformly bounded metrics then the function on the product space defined by $$ d((x_i),(y_i)) = \sum_i 2^{-i} d_i(x_i,y_i) $$ is a metric on the product space $\prod_i X_i$: the corresponding topology is just the product topology. If the metrics $d_i$ are not uniformly bounded then they may be replaced by equivalent bounded metrics $d_i'$ such as $\max\{d_i,1\}$ or $d_i/(1+d_i)$ in this definition. It follows that a countable product of metrizable spaces is metrizable.


References

  • Steen, Lynn Arthur; Seebach, J.Arthur jun. Counterexamples in topology (2nd ed.) Springer (1978) ISBN 0-387-90312-7 Zbl 0386.54001
How to Cite This Entry:
Fréchet metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fr%C3%A9chet_metric&oldid=54722