Difference between revisions of "Opposite ring"
From Encyclopedia of Mathematics
(Start article: Opposite ring) |
(→References: isbn link) |
||
Line 6: | Line 6: | ||
====References==== | ====References==== | ||
− | * Igor R. Shafarevich, tr. M. Reid, ''Basic Notions of Algebra'', Springer (2006) ISBN 3-540-26474-4. | + | * Igor R. Shafarevich, tr. M. Reid, ''Basic Notions of Algebra'', Springer (2006) {{ISBN|3-540-26474-4}}. p.67 |
Latest revision as of 11:57, 23 November 2023
2020 Mathematics Subject Classification: Primary: 16-XX [MSN][ZBL]
of a ring $R$
The ring $R^{\mathrm{op}}$ having the same additive group as $R$ but with multiplication $\circ$ defined by $x \circ y = y \cdot x$ where $\cdot$ is multiplication in $R$.
References
- Igor R. Shafarevich, tr. M. Reid, Basic Notions of Algebra, Springer (2006) ISBN 3-540-26474-4. p.67
How to Cite This Entry:
Opposite ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Opposite_ring&oldid=54588
Opposite ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Opposite_ring&oldid=54588