Namespaces
Variants
Actions

Difference between revisions of "Socle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(add definition of socle of a group)
m (→‎References: isbn link)
 
Line 25: Line 25:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[b1]</TD> <TD valign="top">  Derek Robinson, "A Course in the Theory of Groups", Graduate Texts in Mathematics '''80''' Springer (1996)  ISBN 0-387-94461-3</TD></TR>
+
<TR><TD valign="top">[b1]</TD> <TD valign="top">  Derek Robinson, "A Course in the Theory of Groups", Graduate Texts in Mathematics '''80''' Springer (1996)  {{ISBN|0-387-94461-3}}</TD></TR>
 
</table>
 
</table>
  
 
{{TEX|done}}
 
{{TEX|done}}

Latest revision as of 15:04, 19 November 2023

of a module

The sum of all its simple submodules. When there are none, the socle is taken to be 0. In accordance with this definition one can consider in a ring its left and right socle. Each of them turns out to be a two-sided ideal that is invariant under all endomorphisms of the ring. The socle can be represented as a direct sum of simple modules. Completely-reducible modules (semi-simple modules) can be characterized as modules that coincide with their socle.


Comments

A submodule $N$ of a module $M$ is a large, or essential submodule, if $N \cap N' \ne 0$ for every non-zero submodule $N'$ of $M$. A complement (respectively, essential complement) of $N$ in $M$ is a submodule $N'$ such that $N \cap N' = 0$ and $N + N' = M$ (respectively, $N \cap N' = 0$ and $N + N'$ is large). A module is complemented if each submodule has a complement. Each submodule always has a (not necessarily unique) essential complement. A module is complemented if and only if it is completely reducible and hence if and only if it coincides with its socle. The socle of $M$ can also be defined as the intersection of all the essential submodules of $M$. The socle is the largest semi-simple submodule.

More generally, for a modular lattice $L$ an element $a \in L$ is large or essential if $a \wedge b \ne 0$ for all $b \ne 0$. The socle of a modular lattice is defined as $$ \mathrm{soc}(L) = \bigwedge \{a \in L : a\ \text{large}\} \ . $$ The interval $[0,\mathrm{soc}(L)]$ is a complemented lattice.

References

[a1] L.H. Rowen, "Ring theory" , 1 , Acad. Press (1988) pp. §2.4
[a2] C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973) pp. 367

Comments

The socle of a group is the subgroup generated by the minimal normal subgroups: it is a characteristic subgroup. It is a direct product of minimal normal subgroups.

References

[b1] Derek Robinson, "A Course in the Theory of Groups", Graduate Texts in Mathematics 80 Springer (1996) ISBN 0-387-94461-3
How to Cite This Entry:
Socle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Socle&oldid=54548
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article