Namespaces
Variants
Actions

Difference between revisions of "Compactly continuous map"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Compactly continuous map)
 
m (→‎References: isbn link)
 
Line 8: Line 8:
  
 
==References==
 
==References==
* Francis Borceux, "Handbook of Categorical Algebra: Volume 2, Categories and Structures", Encyclopedia of Mathematics and its Applications, Cambridge University Press (1994) ISBN 0-521-44179-X {{ZBL|1143.18002}}
+
* Francis Borceux, "Handbook of Categorical Algebra: Volume 2, Categories and Structures", Encyclopedia of Mathematics and its Applications, Cambridge University Press (1994) {{ISBN|0-521-44179-X}} {{ZBL|1143.18002}}
 
* R. Brown,  "Function spaces and product topologies"  ''Quart. J. Math.''  '''2'''  (1964)  pp. 238–250. {{ZBL|0126.38503}}
 
* R. Brown,  "Function spaces and product topologies"  ''Quart. J. Math.''  '''2'''  (1964)  pp. 238–250. {{ZBL|0126.38503}}

Latest revision as of 14:05, 19 November 2023

2020 Mathematics Subject Classification: Primary: 54C10 [MSN][ZBL]

A map $f$ of topological spaces $X \rightarrow Y$ with the property that the restriction of $f$ to any compact subspace of $X$ is continuous. Clearly any continuous map is compactly continuous, and the converse holds if $X$ is a locally compact space. The composite of compactly continuous maps is again compactly continuous.

The category of Hausdorff spaces and compactly continuous maps is equivalent to the category of compactly generated spaces and continuous maps. It is a Cartesian-closed category.

See: Exponential law (in topology) and Space of mappings, topological.

References

  • Francis Borceux, "Handbook of Categorical Algebra: Volume 2, Categories and Structures", Encyclopedia of Mathematics and its Applications, Cambridge University Press (1994) ISBN 0-521-44179-X Zbl 1143.18002
  • R. Brown, "Function spaces and product topologies" Quart. J. Math. 2 (1964) pp. 238–250. Zbl 0126.38503
How to Cite This Entry:
Compactly continuous map. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Compactly_continuous_map&oldid=54542