Namespaces
Variants
Actions

Difference between revisions of "Reflexivity"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎References: expand bibliodata)
(→‎References: isbn link)
 
Line 4: Line 4:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Fraïssé, ''Theory of Relations'', Studies in Logic and the Foundations of Mathematics, Elsevier (2011) ISBN 0080960413</TD></TR>
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Fraïssé, ''Theory of Relations'', Studies in Logic and the Foundations of Mathematics, Elsevier (2011) {{ISBN|0080960413}}</TD></TR>
<TR><TD valign="top">[a2]</TD> <TD valign="top">  P. R. Halmos, ''Naive Set Theory'', Springer (1960, repr. 1974) ISBN 0-387-90092-6 {{ZBL|0287.04001}}</TD></TR>
+
<TR><TD valign="top">[a2]</TD> <TD valign="top">  P. R. Halmos, ''Naive Set Theory'', Springer (1960, repr. 1974) {{ISBN|0-387-90092-6}} {{ZBL|0287.04001}}</TD></TR>
 
</table>
 
</table>
  
 
[[Category:Logic and foundations]]
 
[[Category:Logic and foundations]]

Latest revision as of 19:34, 17 November 2023

A property of binary relations. A binary relation $R$ on a set $A$ is called reflexive if $aRa$ for all $a\in A$. Regarding $R$ as a subset of $A \times A$, $R$ is reflexive if it contains the diagonal or identity relation $\Delta = \{(a,a) : a \in A \}$. Examples of reflexive relations are equality (cf Equality axioms), equivalence relations, order.

References

[a1] R. Fraïssé, Theory of Relations, Studies in Logic and the Foundations of Mathematics, Elsevier (2011) ISBN 0080960413
[a2] P. R. Halmos, Naive Set Theory, Springer (1960, repr. 1974) ISBN 0-387-90092-6 Zbl 0287.04001
How to Cite This Entry:
Reflexivity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reflexivity&oldid=54507
This article was adapted from an original article by T.S. Fofanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article