Namespaces
Variants
Actions

Difference between revisions of "Irreducible ideal"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Irreducible ideal)
 
 
Line 2: Line 2:
  
 
====References====
 
====References====
<table>
+
* {{Ref|a1}} D.G. Northcott, "Ideal Theory", Cambridge Tracts in Mathematics '''42''' Cambridge University Press {{ISBN|0-521-60483-4}} p.21
<TR><TD valign="top">[1]</TD> <TD valign="top">  D.G. Northcott, "Ideal Theory", Cambridge Tracts in Mathematics '''42''' Cambridge University Press ISBN 0-521-60483-4 p.21</TD></TR>
 
</table>
 
  
 
{{TEX|done}}
 
{{TEX|done}}

Latest revision as of 18:11, 14 November 2023

An ideal $I$ in a ring which cannot be expressed as the intersection of two strictly larger ideals: that is, $I = J \cap K \Rightarrow I=J \ \text{or}\ I=K$.

References

  • [a1] D.G. Northcott, "Ideal Theory", Cambridge Tracts in Mathematics 42 Cambridge University Press ISBN 0-521-60483-4 p.21
How to Cite This Entry:
Irreducible ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Irreducible_ideal&oldid=54451