Difference between revisions of "Irreducible ideal"
From Encyclopedia of Mathematics
(Start article: Irreducible ideal) |
|||
Line 2: | Line 2: | ||
====References==== | ====References==== | ||
− | + | * {{Ref|a1}} D.G. Northcott, "Ideal Theory", Cambridge Tracts in Mathematics '''42''' Cambridge University Press {{ISBN|0-521-60483-4}} p.21 | |
− | |||
− | |||
{{TEX|done}} | {{TEX|done}} |
Latest revision as of 18:11, 14 November 2023
An ideal $I$ in a ring which cannot be expressed as the intersection of two strictly larger ideals: that is, $I = J \cap K \Rightarrow I=J \ \text{or}\ I=K$.
References
- [a1] D.G. Northcott, "Ideal Theory", Cambridge Tracts in Mathematics 42 Cambridge University Press ISBN 0-521-60483-4 p.21
How to Cite This Entry:
Irreducible ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Irreducible_ideal&oldid=54451
Irreducible ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Irreducible_ideal&oldid=54451