Difference between revisions of "Baer ring"
From Encyclopedia of Mathematics
(Start article: Baer ring) |
(→References: isbn link) |
||
Line 6: | Line 6: | ||
====References==== | ====References==== | ||
− | * Tsit-Yuen Lam, "Lectures on Modules and Rings" Graduate Texts in Mathematics '''189''' Springer (2012) ISBN 1461205255 {{ZBL|0911.16001}} | + | * Tsit-Yuen Lam, "Lectures on Modules and Rings" Graduate Texts in Mathematics '''189''' Springer (2012) {{ISBN|1461205255}} {{ZBL|0911.16001}} |
{{TEX|done}} | {{TEX|done}} |
Latest revision as of 14:22, 12 November 2023
A Baer ring is a ring $R$ in which every left annihilator is generated by an idempotent $e$. The analogous definition in terms of right annihilators is equivalent . A Baer ring is necessarily a left and a right Rickart ring.
Examples of Baer rings include integral domains, and matrix rings over a field.
See also: Baer semi-group.
References
- Tsit-Yuen Lam, "Lectures on Modules and Rings" Graduate Texts in Mathematics 189 Springer (2012) ISBN 1461205255 Zbl 0911.16001
How to Cite This Entry:
Baer ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Baer_ring&oldid=54404
Baer ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Baer_ring&oldid=54404