Namespaces
Variants
Actions

Difference between revisions of "Distributions, complete family of"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX done)
(gather refs)
 
Line 7: Line 7:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.V. Linnik,   "Statistical problems with nuisance parameters" , Amer. Math. Soc.  (1968)  (Translated from Russian)</TD></TR>
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.V. Linnik, "Statistical problems with nuisance parameters" , Amer. Math. Soc.  (1968)  (Translated from Russian)</TD></TR>
<TR><TD valign="top">[2]</TD> <TD valign="top">  E.L. Lehmann,   "Testing statistical hypotheses" , Wiley  (1959)</TD></TR>
+
<TR><TD valign="top">[2]</TD> <TD valign="top">  E.L. Lehmann, "Testing statistical hypotheses" , Wiley  (1959)</TD></TR>
</table>
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Zacks, "The theory of statistical inference" , Wiley  (1971)</TD></TR>
 
 
 
 
 
 
====Comments====
 
 
 
 
 
====References====
 
<table>
 
<TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Zacks,   "The theory of statistical inference" , Wiley  (1971)</TD></TR>
 
 
</table>
 
</table>
  
 
{{TEX|done}}
 
{{TEX|done}}

Latest revision as of 12:23, 12 November 2023

A family of probability measures $\{ \mathbf{P}_\theta : \theta \in \Theta \subset \mathbf{R}^k \}$, defined on a measure space $(\mathfrak{X}, \mathfrak{B})$, for which the unique unbiased estimator of zero in the class of $\mathfrak{B}$-measurable functions on $\mathfrak{X}$ is the function identically equal to zero, that is, if $f({\cdot})$ is any $\mathfrak{B}$-measurable function defined on $\mathfrak{X}$ satisfying the relation \begin{equation}\label{eq:a1} \int_{\mathfrak{X}} f(x) \,\mathrm{d}\mathbf{P}_\theta = 0 \ \ \text{for all}\ \theta\in\Theta\,, \end{equation} then $f(x)=0$ $\mathbf{P}_\theta$-almost-everywhere, for all $\theta\in\Theta$. For example, a family of exponential distributions is complete. If the relation \eqref{eq:a1} is satisfied under the further assumption that $f$ is bounded, then the family $\{ \mathbf{P}_\theta : \theta \in \Theta \}$ is said to be boundedly complete. Boundedly-complete families of distributions of sufficient statistics play a major role in mathematical statistics, in particular in the problem of constructing similar tests with a Neyman structure.

References

[1] Yu.V. Linnik, "Statistical problems with nuisance parameters" , Amer. Math. Soc. (1968) (Translated from Russian)
[2] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1959)
[a1] S. Zacks, "The theory of statistical inference" , Wiley (1971)
How to Cite This Entry:
Distributions, complete family of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Distributions,_complete_family_of&oldid=54382
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article