Namespaces
Variants
Actions

Difference between revisions of "Tits quadratic form"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (Automatically changed introduction)
m (gt to >)
Line 29: Line 29:
 
where , for a minimal set L of generators of I contained in \sum _ { i , j \in Q _ { 0 } } e _ { j } I  { e }_i. One checks that r_{i,\,j} = \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { 2 } ( S _ { j } , S _ { i } ), where S _ { t } is the simple R-module associated to the vertex t \in Q_0. Then the definition of q_{ R} depends only on R, and when R is of global dimension at most two, the form q_{ R} coincides with the Euler characteristic \chi _ { R } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow \mathbf Z, [ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X ), under a group isomorphism \underline{\operatorname { dim }}  : K _ { 0 } ( \operatorname { mod } R ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140120.png"/> is the [[Grothendieck group|Grothendieck group]] of the category \operatorname{mod} R of finite-dimensional right R-modules (see [[#References|[a17]]]). Note that q_R = q_Q if R = K Q.
 
where r_{i, j} = | L \cap e _ { j } I e _ { i } |, for a minimal set L of generators of I contained in \sum _ { i , j \in Q _ { 0 } } e _ { j } I  { e }_i. One checks that r_{i,\,j} = \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { 2 } ( S _ { j } , S _ { i } ), where S _ { t } is the simple R-module associated to the vertex t \in Q_0. Then the definition of q_{ R} depends only on R, and when R is of global dimension at most two, the form q_{ R} coincides with the Euler characteristic \chi _ { R } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow \mathbf Z, [ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X ), under a group isomorphism \underline{\operatorname { dim }}  : K _ { 0 } ( \operatorname { mod } R ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140120.png"/> is the [[Grothendieck group|Grothendieck group]] of the category \operatorname{mod} R of finite-dimensional right R-modules (see [[#References|[a17]]]). Note that q_R = q_Q if R = K Q.
  
By applying a Tits-type equality as above, Bongartz [[#References|[a3]]] proved that if R is of finite representation type, then q_{ R} is weakly positive, that is, $q _ { R } ( v ) &gt; 0 for all non-zero vectors v \in {\bf N} ^ { n }. The converse implication does not hold in general, but it has been established if the Auslander–Reiten quiver of R$ (see [[Riedtmann classification|Riedtmann classification]]) has a post-projective component (see [[#References|[a10]]]), by applying an idea of Drozd [[#References|[a5]]]. J.A. de la Peña [[#References|[a14]]] proved that if R is of tame representation type, then q_{ R} is weakly non-negative. The converse implication does not hold in general, but it has been proved under a suitable assumption on R (see [[#References|[a13]]] and [[#References|[a16]]] for a discussion of this problem and relations between the Tits quadratic form and the Euler quadratic form of R).
+
By applying a Tits-type equality as above, Bongartz [[#References|[a3]]] proved that if R is of finite representation type, then q_{ R} is weakly positive, that is, $q _ { R } ( v ) > 0 for all non-zero vectors v \in {\bf N} ^ { n }. The converse implication does not hold in general, but it has been established if the Auslander–Reiten quiver of R (see [[Riedtmann classification]]) has a post-projective component (see [[#References|[a10]]]), by applying an idea of Drozd [[#References|[a5]]]. J.A. de la Peña [[#References|[a14]]] proved that if R is of tame representation type, then q_{ R} is weakly non-negative. The converse implication does not hold in general, but it has been proved under a suitable assumption on R (see [[#References|[a13]]] and [[#References|[a16]]] for a discussion of this problem and relations between the Tits quadratic form and the Euler quadratic form of R$).
  
 
Let ( I , \preceq ) be a partially ordered set with partial order relation \preceq and let \operatorname { max}I be the set of all maximal elements of ( I , \preceq ). Following [[#References|[a5]]] and [[#References|[a15]]], D. Simson [[#References|[a20]]] defined the Tits quadratic form q_l : \mathbf{Z} ^ { l } \rightarrow \mathbf{Z} of ( I , \preceq ) by the formula
 
Let ( I , \preceq ) be a partially ordered set with partial order relation \preceq and let \operatorname { max}I be the set of all maximal elements of ( I , \preceq ). Following [[#References|[a5]]] and [[#References|[a15]]], D. Simson [[#References|[a20]]] defined the Tits quadratic form q_l : \mathbf{Z} ^ { l } \rightarrow \mathbf{Z} of ( I , \preceq ) by the formula
Line 42: Line 42:
  
 
====References====
 
====References====
<table><tr><td valign="top">[a1]</td> <td valign="top"> V.I. Auslander, I. Reiten, S. Smalø, "Representation theory of Artin algebras" , ''Studies Adv. Math.'' , '''36''' , Cambridge Univ. Press (1995) {{MR|1314422}} {{ZBL|0834.16001}} </td></tr><tr><td valign="top">[a2]</td> <td valign="top"> I.N. Bernstein, I.M. Gelfand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" ''Russian Math. Surveys'' , '''28''' (1973) pp. 17–32 ''Uspekhi Mat. Nauk.'' , '''28''' (1973) pp. 19–33 {{MR|393065}} {{ZBL|}} </td></tr><tr><td valign="top">[a3]</td> <td valign="top"> K. Bongartz, "Algebras and quadratic forms" ''J. London Math. Soc.'' , '''28''' (1983) pp. 461–469 {{MR|0724715}} {{ZBL|0532.16020}} </td></tr><tr><td valign="top">[a4]</td> <td valign="top"> V. Dlab, C.M. Ringel, "Indecomposable representations of graphs and algebras" , ''Memoirs'' , '''173''' , Amer. Math. Soc. (1976) {{MR|0447344}} {{ZBL|0332.16015}} </td></tr><tr><td valign="top">[a5]</td> <td valign="top"> Yu.A. Drozd, "Coxeter transformations and representations of partially ordered sets" ''Funkts. Anal. Prilozhen.'' , '''8''' (1974) pp. 34–42 (In Russian) {{MR|0351924}} {{ZBL|0356.06003}} </td></tr><tr><td valign="top">[a6]</td> <td valign="top"> Yu.A. Drozd, "On tame and wild matrix problems" , ''Matrix Problems'' , Akad. Nauk. Ukr. SSR., Inst. Mat. Kiev (1977) pp. 104–114 (In Russian) {{MR|498704}} {{ZBL|}} </td></tr><tr><td valign="top">[a7]</td> <td valign="top"> Yu.A. Drozd, "Tame and wild matrix problems" , ''Representations and Quadratic Forms'' (1979) pp. 39–74 (In Russian) {{MR|0600111}} {{ZBL|0454.16014}} </td></tr><tr><td valign="top">[a8]</td> <td valign="top"> P. Gabriel, "Unzerlegbare Darstellungen 1" ''Manuscripta Math.'' , '''6''' (1972) pp. 71–103 (Also: Berichtigungen 6 (1972), 309) {{MR|332887}} {{ZBL|}} </td></tr><tr><td valign="top">[a9]</td> <td valign="top"> P. Gabriel, "Représentations indécomposables" , ''Séminaire Bourbaki (1973/74)'' , ''Lecture Notes in Mathematics'' , '''431''' , Springer (1975) pp. 143–169 {{MR|0485996}} {{ZBL|0335.17005}} </td></tr><tr><td valign="top">[a10]</td> <td valign="top"> P. Gabriel, A.V. Roiter, "Representations of finite dimensional algebras" , ''Algebra VIII'' , ''Encycl. Math. Stud.'' , '''73''' , Springer (1992) {{MR|1239446}} {{MR|1239447}} {{ZBL|0839.16001}} </td></tr><tr><td valign="top">[a11]</td> <td valign="top"> S. Kasjan, D. Simson, "Tame prinjective type and Tits form of two-peak posets II" ''J. Algebra'' , '''187''' (1997) pp. 71–96 {{MR|1425560}} {{ZBL|0944.16013}} </td></tr><tr><td valign="top">[a12]</td> <td valign="top"> L.A. Nazarova, "Representations of quivers of infinite type" ''Izv. Akad. Nauk. SSSR'' , '''37''' (1973) pp. 752–791 (In Russian) {{MR|0338018}} {{ZBL|0298.15012}} </td></tr><tr><td valign="top">[a13]</td> <td valign="top"> J.A. de la Peña, "Algebras with hypercritical Tits form" , ''Topics in Algebra'' , ''Banach Center Publ.'' , '''26: 1''' , PWN (1990) pp. 353–369 {{MR|}} {{ZBL|0731.16008}} </td></tr><tr><td valign="top">[a14]</td> <td valign="top"> J.A. de la Peña, "On the dimension of the module-varieties of tame and wild algebras" ''Commun. Algebra'' , '''19''' (1991) pp. 1795–1807 {{MR|}} {{ZBL|0818.16013}} </td></tr><tr><td valign="top">[a15]</td> <td valign="top"> J.A. de la Peña, D. Simson, "Prinjective modules, reflection functors, quadratic forms and Auslander–Reiten sequences" ''Trans. Amer. Math. Soc.'' , '''329''' (1992) pp. 733–753 {{MR|1025753}} {{ZBL|0789.16010}} </td></tr><tr><td valign="top">[a16]</td> <td valign="top"> J.A. de la Peña, A. Skowroński, "The Euler and Tits forms of a tame algebra" ''Math. Ann.'' , '''315''' (2000) pp. 37–59 {{MR|}} {{ZBL|0941.16010}} </td></tr><tr><td valign="top">[a17]</td> <td valign="top"> C.M. Ringel, "Tame algebras and integral quadratic forms" , ''Lecture Notes in Mathematics'' , '''1099''' , Springer (1984) {{MR|0774589}} {{ZBL|0546.16013}} </td></tr><tr><td valign="top">[a18]</td> <td valign="top"> A.V. Roiter, M.M. Kleiner, "Representations of differential graded categories" , ''Lecture Notes in Mathematics'' , '''488''' , Springer (1975) pp. 316–339 {{MR|0435145}} {{ZBL|0356.16011}} </td></tr><tr><td valign="top">[a19]</td> <td valign="top"> D. Simson, "Linear representations of partially ordered sets and vector space categories" , ''Algebra, Logic Appl.'' , '''4''' , Gordon &amp; Breach (1992) {{MR|1241646}} {{ZBL|0818.16009}} </td></tr><tr><td valign="top">[a20]</td> <td valign="top"> D. Simson, "Posets of finite prinjective type and a class of orders" ''J. Pure Appl. Algebra'' , '''90''' (1993) pp. 77–103 {{MR|1246276}} {{ZBL|0815.16006}} </td></tr><tr><td valign="top">[a21]</td> <td valign="top"> D. Simson, "Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders" ''Contemp. Math.'' , '''229''' (1998) pp. 307–342 {{MR|1676228}} {{ZBL|0921.16007}} </td></tr><tr><td valign="top">[a22]</td> <td valign="top"> D. Simson, "Coalgebras, comodules, pseudocompact algebras and tame comodule type" ''Colloq. Math.'' , '''in press''' (2001) {{MR|1874368}} {{ZBL|1055.16038}} </td></tr></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top"> V.I. Auslander, I. Reiten, S. Smalø, "Representation theory of Artin algebras" , ''Studies Adv. Math.'' , '''36''' , Cambridge Univ. Press (1995) {{MR|1314422}} {{ZBL|0834.16001}} </td></tr><tr><td valign="top">[a2]</td> <td valign="top"> I.N. Bernstein, I.M. Gelfand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" ''Russian Math. Surveys'' , '''28''' (1973) pp. 17–32 ''Uspekhi Mat. Nauk.'' , '''28''' (1973) pp. 19–33 {{MR|393065}} {{ZBL|}} </td></tr><tr><td valign="top">[a3]</td> <td valign="top"> K. Bongartz, "Algebras and quadratic forms" ''J. London Math. Soc.'' , '''28''' (1983) pp. 461–469 {{MR|0724715}} {{ZBL|0532.16020}} </td></tr><tr><td valign="top">[a4]</td> <td valign="top"> V. Dlab, C.M. Ringel, "Indecomposable representations of graphs and algebras" , ''Memoirs'' , '''173''' , Amer. Math. Soc. (1976) {{MR|0447344}} {{ZBL|0332.16015}} </td></tr><tr><td valign="top">[a5]</td> <td valign="top"> Yu.A. Drozd, "Coxeter transformations and representations of partially ordered sets" ''Funkts. Anal. Prilozhen.'' , '''8''' (1974) pp. 34–42 (In Russian) {{MR|0351924}} {{ZBL|0356.06003}} </td></tr><tr><td valign="top">[a6]</td> <td valign="top"> Yu.A. Drozd, "On tame and wild matrix problems" , ''Matrix Problems'' , Akad. Nauk. Ukr. SSR., Inst. Mat. Kiev (1977) pp. 104–114 (In Russian) {{MR|498704}} {{ZBL|}} </td></tr><tr><td valign="top">[a7]</td> <td valign="top"> Yu.A. Drozd, "Tame and wild matrix problems" , ''Representations and Quadratic Forms'' (1979) pp. 39–74 (In Russian) {{MR|0600111}} {{ZBL|0454.16014}} </td></tr><tr><td valign="top">[a8]</td> <td valign="top"> P. Gabriel, "Unzerlegbare Darstellungen 1" ''Manuscripta Math.'' , '''6''' (1972) pp. 71–103 (Also: Berichtigungen 6 (1972), 309) {{MR|332887}} {{ZBL|}} </td></tr><tr><td valign="top">[a9]</td> <td valign="top"> P. Gabriel, "Représentations indécomposables" , ''Séminaire Bourbaki (1973/74)'' , ''Lecture Notes in Mathematics'' , '''431''' , Springer (1975) pp. 143–169 {{MR|0485996}} {{ZBL|0335.17005}} </td></tr><tr><td valign="top">[a10]</td> <td valign="top"> P. Gabriel, A.V. Roiter, "Representations of finite dimensional algebras" , ''Algebra VIII'' , ''Encycl. Math. Stud.'' , '''73''' , Springer (1992) {{MR|1239446}} {{MR|1239447}} {{ZBL|0839.16001}} </td></tr><tr><td valign="top">[a11]</td> <td valign="top"> S. Kasjan, D. Simson, "Tame prinjective type and Tits form of two-peak posets II" ''J. Algebra'' , '''187''' (1997) pp. 71–96 {{MR|1425560}} {{ZBL|0944.16013}} </td></tr><tr><td valign="top">[a12]</td> <td valign="top"> L.A. Nazarova, "Representations of quivers of infinite type" ''Izv. Akad. Nauk. SSSR'' , '''37''' (1973) pp. 752–791 (In Russian) {{MR|0338018}} {{ZBL|0298.15012}} </td></tr><tr><td valign="top">[a13]</td> <td valign="top"> J.A. de la Peña, "Algebras with hypercritical Tits form" , ''Topics in Algebra'' , ''Banach Center Publ.'' , '''26: 1''' , PWN (1990) pp. 353–369 {{MR|}} {{ZBL|0731.16008}} </td></tr><tr><td valign="top">[a14]</td> <td valign="top"> J.A. de la Peña, "On the dimension of the module-varieties of tame and wild algebras" ''Commun. Algebra'' , '''19''' (1991) pp. 1795–1807 {{MR|}} {{ZBL|0818.16013}} </td></tr><tr><td valign="top">[a15]</td> <td valign="top"> J.A. de la Peña, D. Simson, "Prinjective modules, reflection functors, quadratic forms and Auslander–Reiten sequences" ''Trans. Amer. Math. Soc.'' , '''329''' (1992) pp. 733–753 {{MR|1025753}} {{ZBL|0789.16010}} </td></tr><tr><td valign="top">[a16]</td> <td valign="top"> J.A. de la Peña, A. Skowroński, "The Euler and Tits forms of a tame algebra" ''Math. Ann.'' , '''315''' (2000) pp. 37–59 {{MR|}} {{ZBL|0941.16010}} </td></tr><tr><td valign="top">[a17]</td> <td valign="top"> C.M. Ringel, "Tame algebras and integral quadratic forms" , ''Lecture Notes in Mathematics'' , '''1099''' , Springer (1984) {{MR|0774589}} {{ZBL|0546.16013}} </td></tr><tr><td valign="top">[a18]</td> <td valign="top"> A.V. Roiter, M.M. Kleiner, "Representations of differential graded categories" , ''Lecture Notes in Mathematics'' , '''488''' , Springer (1975) pp. 316–339 {{MR|0435145}} {{ZBL|0356.16011}} </td></tr><tr><td valign="top">[a19]</td> <td valign="top"> D. Simson, "Linear representations of partially ordered sets and vector space categories" , ''Algebra, Logic Appl.'' , '''4''' , Gordon &amp; Breach (1992) {{MR|1241646}} {{ZBL|0818.16009}} </td></tr><tr><td valign="top">[a20]</td> <td valign="top"> D. Simson, "Posets of finite prinjective type and a class of orders" ''J. Pure Appl. Algebra'' , '''90''' (1993) pp. 77–103 {{MR|1246276}} {{ZBL|0815.16006}} </td></tr><tr><td valign="top">[a21]</td> <td valign="top"> D. Simson, "Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders" ''Contemp. Math.'' , '''229''' (1998) pp. 307–342 {{MR|1676228}} {{ZBL|0921.16007}} </td></tr><tr><td valign="top">[a22]</td> <td valign="top"> D. Simson, "Coalgebras, comodules, pseudocompact algebras and tame comodule type" ''Colloq. Math.'' , '''in press''' (2001) {{MR|1874368}} {{ZBL|1055.16038}} </td></tr>
 +
</table>

Revision as of 10:24, 11 November 2023

Let Q = ( Q _ { 0 } , Q _ { 1 } ) be a finite quiver (see [a8]), that is, an oriented graph with vertex set Q_0 and set Q _ { 1 } of arrows (oriented edges; cf. also Graph, oriented; Quiver). Following P. Gabriel [a8], [a9], the Tits quadratic form q_{Q} : \mathbf{Z} ^ { Q _ { 0 } } \rightarrow \mathbf{Z} of Q is defined by the formula

\begin{equation*} q_Q ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }, \end{equation*}

where x = ( x _ { i } ) _ { i \in Q _ { 0 } } \in \mathbf{Z} ^ { Q _ { 0 } } and d _ { i j} is the number of arrows from i to j in Q _ { 1 }.

There are important applications of the Tits form in representation theory. One easily proves that if Q is connected, then q_Q is positive definite if and only if Q (viewed as a non-oriented graph) is any of the Dynkin diagrams \mathbf{A} _ { n }, {\bf D} _ { n }, {\bf E} _ { 6 }, \mathbf{E} _ { 7 }, or \mathbf{E} _ { 8 } (cf. also Dynkin diagram). On the other hand, the Gabriel theorem [a8] asserts that this is the case if and only if Q has only finitely many isomorphism classes of indecomposable K-linear representations, where K is an algebraically closed field (see also [a2]). Let \operatorname{rep}_K( Q ) be the Abelian category of finite-dimensional K-linear representations of Q formed by the systems \mathbf{X} = ( X _ { i } , \phi _ { \beta } ) _ { j \in Q _ { 0 } , \beta \in Q _ { 1 }} of finite-dimensional vector K-spaces X_j, connected by K-linear mappings \phi _ { \beta } : X _ { i } \rightarrow X _ { j } corresponding to arrows \beta : i \rightarrow j of Q. By a theorem of L.A. Nazarova [a12], given a connected quiver Q the category \operatorname{rep}_K( Q ) is of tame representation type (see [a7], [a10], [a19] and Quiver) if and only if q_Q is positive semi-definite, or equivalently, if and only if Q (viewed as a non-oriented graph) is any of the extended Dynkin diagrams \tilde { A }_{ n }, \tilde { \mathbf{D} } _ { n }, \widetilde{\bf E} _ { 6 }, \tilde{\mathbf{E}} _ { 7 }, or \tilde{\bf E} _ { 8 } (see [a1], [a10], [a19]; and [a4] for a generalization).

Let K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) ) be the Grothendieck group of the category \operatorname{rep}_K( Q ). By the Jordan–Hölder theorem, the correspondence \mathbf{X} \mapsto \underline{\operatorname { dim }} \mathbf{X} = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } } defines a group isomorphism \underline{\operatorname { dim }} : K _ { 0 } ( Q ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }. One shows that the Tits form q_Q coincides with the Euler characteristic \chi _ { Q } : K _ { 0 } ( Q ) \rightarrow \mathbf{Z}, [ \mathbf{X} ] \mapsto \chi _ { Q } ( [ \mathbf{X} ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( \mathbf{X} ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( \mathbf{X} , \mathbf{X} ), along the isomorphism \underline{\operatorname { dim }} : K _ { 0 } ( Q ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }, that is, q_{Q} ( \underline { \operatorname { dim } } \mathbf{X} ) = \chi _ { Q } ( [ \mathbf{X} ] ) for any \mathbf{X} in \operatorname{rep}_K( Q ) (see [a10], [a17]).

The Tits quadratic form q_Q is related with an algebraic geometry context defined as follows (see [a9], [a10], [a19]).

For any vector v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in \mathbf{N} ^ { Q _ { 0 } }, consider the affine irreducible K-variety \mathcal{A} _ { Q } ( v ) = \prod _ { i ,\, j \in Q _ { 0 } } \prod _ { ( \beta : j \rightarrow i ) \in Q _ { 1 } } \mathbf{M} _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } of K-representations of Q of the dimension type v (in the Zariski topology), where \mathbf{M} _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = \mathbf{M} _ { v _ { i } \times v _ { j } } ( K ) is the space of ( v _ { i } \times v _ { j } )-matrices for any arrow \beta : j \rightarrow i of Q. Consider the algebraic group {\cal G} \operatorname{l} _ { Q } ( d ) = \prod _ { j \in Q _ { 0 } } \operatorname{Gl} ( v _ { j } , K ) and the algebraic group action * : \mathcal{G} \text{l} _ { Q } ( d ) \times \mathcal{A} _ { Q } ( d ) \rightarrow \mathcal{A} _ { Q } ( d ) defined by the formula ( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } ), where \beta : j \rightarrow i is an arrow of Q, M _ { i j } ^ { \beta } \in \mathbf{M} _ { v _ { j } \times v _ { i } } ( K ) _ { \beta }, h _ { j } \in \operatorname{Gl} ( v _ { j } , K ), and h _ { i } \in \operatorname{Gl} ( v _ { i } , K ). An important role in applications is played by the Tits-type equality q_Q ( v ) = \operatorname { dim } {\cal G}\operatorname{l} _ { Q } ( v ) - \operatorname { dim } {\cal A} _ { Q } ( v ), v \in \mathbf N ^ { Q _ 0}, where denotes the dimension of the algebraic variety (see [a8]).

Following the above ideas, Yu.A. Drozd [a5] introduced and successfully applied a Tits quadratic form in the study of finite representation type of the Krull–Schmidt category of matrix K-representations of partially ordered sets ( I , \preceq ) with a unique maximal element (see [a10], [a19]). In [a6] and [a7] he also studied bimodule matrix problems and the representation type of boxes \mathcal{B} by means of an associated Tits quadratic form q_{\cal B} : {\bf Z} ^ { n } \rightarrow {\bf Z} (see also [a18]). In particular, he showed [a6] that if \mathcal{B} is of tame representation type, then q_{\mathcal{B}} is weakly non-negative, that is, q _ { \mathcal B } ( v ) \geq 0 for all v \in {\bf N} ^ { n }.

K. Bongartz [a3] associated with any finite-dimensional basic K-algebra R a Tits quadratic form as follows. Let \{ e _ { 1 } , \ldots , e _ { n } \} be a complete set of primitive pairwise non-isomorphic orthogonal idempotents of the algebra R. Fix a finite quiver Q = ( Q _ { 0 } , Q _ { 1 } ) with Q _ { 0 } = \{ 1 , \ldots , n \} and a K-algebra isomorphism R \simeq K Q / I, where K Q is the path K-algebra of the quiver Q (see [a1], [a10], [a19]) and I is an ideal of R contained in the square of the Jacobson radical \operatorname{rad} R of R and containing a power of \operatorname{rad} R. Assume that Q has no oriented cycles (and hence the global dimension of R is finite). The Tits quadratic form q_R : {\bf Z} ^ { n } \rightarrow \bf Z of R is defined by the formula

\begin{equation*} q_{ R} ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ {( \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { ( \beta : i \rightarrow j ) \in Q _ { 1 } } r _ { i ,\, j } x _ { i } x _ { j }, \end{equation*}

where r_{i, j} = | L \cap e _ { j } I e _ { i } |, for a minimal set L of generators of I contained in \sum _ { i , j \in Q _ { 0 } } e _ { j } I { e }_i. One checks that r_{i,\,j} = \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { 2 } ( S _ { j } , S _ { i } ), where S _ { t } is the simple R-module associated to the vertex t \in Q_0. Then the definition of q_{ R} depends only on R, and when R is of global dimension at most two, the form q_{ R} coincides with the Euler characteristic \chi _ { R } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow \mathbf Z, [ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X ), under a group isomorphism \underline{\operatorname { dim }} : K _ { 0 } ( \operatorname { mod } R ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }, where is the Grothendieck group of the category \operatorname{mod} R of finite-dimensional right R-modules (see [a17]). Note that q_R = q_Q if R = K Q.

By applying a Tits-type equality as above, Bongartz [a3] proved that if R is of finite representation type, then q_{ R} is weakly positive, that is, q _ { R } ( v ) > 0 for all non-zero vectors v \in {\bf N} ^ { n }. The converse implication does not hold in general, but it has been established if the Auslander–Reiten quiver of R (see Riedtmann classification) has a post-projective component (see [a10]), by applying an idea of Drozd [a5]. J.A. de la Peña [a14] proved that if R is of tame representation type, then q_{ R} is weakly non-negative. The converse implication does not hold in general, but it has been proved under a suitable assumption on R (see [a13] and [a16] for a discussion of this problem and relations between the Tits quadratic form and the Euler quadratic form of R).

Let ( I , \preceq ) be a partially ordered set with partial order relation \preceq and let \operatorname { max}I be the set of all maximal elements of ( I , \preceq ). Following [a5] and [a15], D. Simson [a20] defined the Tits quadratic form q_l : \mathbf{Z} ^ { l } \rightarrow \mathbf{Z} of ( I , \preceq ) by the formula

\begin{equation*} q _I( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { \substack {i \prec j} \\{j\in I\backslash \operatorname {max} I} } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } I } ( \sum _ { i \prec p } x _ { i } ) x _ { p } \end{equation*}

and applied it in the study of prinjective KI-modules, that is, finite-dimensional right modules X over the incidence K-algebra K I = K ( I , \preceq ) of ( I , \preceq ) such that there is an exact sequence 0 \rightarrow P _ { 1 } \rightarrow P _ { 0 } \rightarrow X \rightarrow 0, where P_0 is a projective KI-module and P _ { 1 } is a direct sum of simple projectives. The additive Krull–Schmidt category \operatorname { prin } K I of prinjective KI-modules is equivalent to the category of matrix K-representations of ( I , \preceq ) [a20]. Under an identification K_{0} ( \operatorname { prin } K I ) \simeq \mathbf{Z} ^ { I }, the Tits form q_{l} is equal to the Euler characteristic \chi _ { K I } : K _ { 0 } ( \operatorname { prin } K I ) \rightarrow \bf Z. A Tits-type equality is also valid for q_{l} [a15]. It has been proved in [a20] that q_{l} is weakly positive if and only if \operatorname { prin } K I has only a finite number of iso-classes of indecomposable modules. By [a15], if \operatorname { prin } K I is of tame representation type, then q_{l} is weakly non-negative. The converse implication does not hold in general, but it has been proved under some assumption on ( I , \preceq ) (see [a11]).

A Tits quadratic form q _ { \Lambda } : \mathbf{Z} ^ { n } \rightarrow \mathbf{Z} for a class of classical D-orders \Lambda, where D is a complete discrete valuation domain, has been defined in [a21]. Criteria for the finite lattice type and tame lattice type of \Lambda are given in [a21] by means of q _ { \Lambda }.

For a class of K-co-algebras C, a Tits quadratic form q _ { C } : \mathbf{Z} ^ { ( l _ { C } ) } \rightarrow \mathbf{Z} is defined in [a22], and the co-module types of C are studied by means of q_{C}, where I _ { C } is a complete set of pairwise non-isomorphic simple left C-co-modules and {\bf Z} ^ { ( I _ { C } ) } is a free Abelian group of rank | I _ { C } |.

References

[a1] V.I. Auslander, I. Reiten, S. Smalø, "Representation theory of Artin algebras" , Studies Adv. Math. , 36 , Cambridge Univ. Press (1995) MR1314422 Zbl 0834.16001
[a2] I.N. Bernstein, I.M. Gelfand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" Russian Math. Surveys , 28 (1973) pp. 17–32 Uspekhi Mat. Nauk. , 28 (1973) pp. 19–33 MR393065
[a3] K. Bongartz, "Algebras and quadratic forms" J. London Math. Soc. , 28 (1983) pp. 461–469 MR0724715 Zbl 0532.16020
[a4] V. Dlab, C.M. Ringel, "Indecomposable representations of graphs and algebras" , Memoirs , 173 , Amer. Math. Soc. (1976) MR0447344 Zbl 0332.16015
[a5] Yu.A. Drozd, "Coxeter transformations and representations of partially ordered sets" Funkts. Anal. Prilozhen. , 8 (1974) pp. 34–42 (In Russian) MR0351924 Zbl 0356.06003
[a6] Yu.A. Drozd, "On tame and wild matrix problems" , Matrix Problems , Akad. Nauk. Ukr. SSR., Inst. Mat. Kiev (1977) pp. 104–114 (In Russian) MR498704
[a7] Yu.A. Drozd, "Tame and wild matrix problems" , Representations and Quadratic Forms (1979) pp. 39–74 (In Russian) MR0600111 Zbl 0454.16014
[a8] P. Gabriel, "Unzerlegbare Darstellungen 1" Manuscripta Math. , 6 (1972) pp. 71–103 (Also: Berichtigungen 6 (1972), 309) MR332887
[a9] P. Gabriel, "Représentations indécomposables" , Séminaire Bourbaki (1973/74) , Lecture Notes in Mathematics , 431 , Springer (1975) pp. 143–169 MR0485996 Zbl 0335.17005
[a10] P. Gabriel, A.V. Roiter, "Representations of finite dimensional algebras" , Algebra VIII , Encycl. Math. Stud. , 73 , Springer (1992) MR1239446 MR1239447 Zbl 0839.16001
[a11] S. Kasjan, D. Simson, "Tame prinjective type and Tits form of two-peak posets II" J. Algebra , 187 (1997) pp. 71–96 MR1425560 Zbl 0944.16013
[a12] L.A. Nazarova, "Representations of quivers of infinite type" Izv. Akad. Nauk. SSSR , 37 (1973) pp. 752–791 (In Russian) MR0338018 Zbl 0298.15012
[a13] J.A. de la Peña, "Algebras with hypercritical Tits form" , Topics in Algebra , Banach Center Publ. , 26: 1 , PWN (1990) pp. 353–369 Zbl 0731.16008
[a14] J.A. de la Peña, "On the dimension of the module-varieties of tame and wild algebras" Commun. Algebra , 19 (1991) pp. 1795–1807 Zbl 0818.16013
[a15] J.A. de la Peña, D. Simson, "Prinjective modules, reflection functors, quadratic forms and Auslander–Reiten sequences" Trans. Amer. Math. Soc. , 329 (1992) pp. 733–753 MR1025753 Zbl 0789.16010
[a16] J.A. de la Peña, A. Skowroński, "The Euler and Tits forms of a tame algebra" Math. Ann. , 315 (2000) pp. 37–59 Zbl 0941.16010
[a17] C.M. Ringel, "Tame algebras and integral quadratic forms" , Lecture Notes in Mathematics , 1099 , Springer (1984) MR0774589 Zbl 0546.16013
[a18] A.V. Roiter, M.M. Kleiner, "Representations of differential graded categories" , Lecture Notes in Mathematics , 488 , Springer (1975) pp. 316–339 MR0435145 Zbl 0356.16011
[a19] D. Simson, "Linear representations of partially ordered sets and vector space categories" , Algebra, Logic Appl. , 4 , Gordon & Breach (1992) MR1241646 Zbl 0818.16009
[a20] D. Simson, "Posets of finite prinjective type and a class of orders" J. Pure Appl. Algebra , 90 (1993) pp. 77–103 MR1246276 Zbl 0815.16006
[a21] D. Simson, "Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders" Contemp. Math. , 229 (1998) pp. 307–342 MR1676228 Zbl 0921.16007
[a22] D. Simson, "Coalgebras, comodules, pseudocompact algebras and tame comodule type" Colloq. Math. , in press (2001) MR1874368 Zbl 1055.16038
How to Cite This Entry:
Tits quadratic form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tits_quadratic_form&oldid=54339
This article was adapted from an original article by Daniel Simson (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article