Difference between revisions of "Dickman-function(2)"
m (AUTOMATIC EDIT (latexlist): Replaced 2 formulas out of 2 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
m (details) |
||
Line 17: | Line 17: | ||
$$ | $$ | ||
− | u \rho ^ \prime ( u ) = - \rho ( u - 1 ) ( u | + | u \rho ^ \prime ( u ) = - \rho ( u - 1 ) ( u > 1 ) . |
$$ | $$ | ||
Line 24: | Line 24: | ||
of positive integers not exceeding $ x $ | of positive integers not exceeding $ x $ | ||
that are free of prime factors greater than $ y $: | that are free of prime factors greater than $ y $: | ||
− | for any fixed $ u | + | for any fixed $ u > 0 $, |
one has $ \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $ | one has $ \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $ | ||
as $ u \rightarrow \infty $[[#References|[a2]]], [[#References|[a4]]]. | as $ u \rightarrow \infty $[[#References|[a2]]], [[#References|[a4]]]. | ||
Line 44: | Line 44: | ||
{ \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ { \xi ( u ) } { { | { \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ { \xi ( u ) } { { | ||
\frac{e ^ {s} - 1 }{s} | \frac{e ^ {s} - 1 }{s} | ||
− | } } {ds } \right \} ( u | + | } } {ds } \right \} ( u > 1 ) , |
$$ | $$ | ||
− | where | + | where $\gamma$ is the [[Euler constant]] and $ \xi ( u ) $ |
− | is the [[ | ||
is the unique positive solution of the equation $ e ^ {\xi ( u ) } = 1 + u \xi ( u ) $. | is the unique positive solution of the equation $ e ^ {\xi ( u ) } = 1 + u \xi ( u ) $. | ||
====References==== | ====References==== | ||
− | <table><tr><td valign="top">[a1]</td> <td valign="top"> K. Alladi, | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> K. Alladi, "The Turán–Kubilius inequality for integers without large prime factors" ''J. Reine Angew. Math.'' , '''335''' (1982) pp. 180–196</td></tr> | ||
+ | <tr><td valign="top">[a2]</td> <td valign="top"> N.G. de Bruijn, "On the number of positive integers $\leq x$ and free of prime factors $> y$" ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''54''' (1951) pp. 50–60</td></tr> | ||
+ | <tr><td valign="top">[a3]</td> <td valign="top"> N.G. de Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes" ''J. Indian Math. Soc. (N.S.)'' , '''15''' (1951) pp. 25–32</td></tr> | ||
+ | <tr><td valign="top">[a4]</td> <td valign="top"> A. Hildebrand, G. Tenenbaum, "Integers without large prime factors" ''J. de Théorie des Nombres de Bordeaux'' , '''5''' (1993) pp. 411–484</td></tr> | ||
+ | </table> |
Revision as of 08:54, 10 November 2023
The unique continuous solution of the system
$$ \rho ( u ) = 1 ( 0 \leq u \leq 1 ) , $$
$$ u \rho ^ \prime ( u ) = - \rho ( u - 1 ) ( u > 1 ) . $$
The Dickman function $ \rho ( u ) $ occurs in the problem of estimating the number $ \Psi ( x,y ) $ of positive integers not exceeding $ x $ that are free of prime factors greater than $ y $: for any fixed $ u > 0 $, one has $ \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $ as $ u \rightarrow \infty $[a2], [a4].
The function $ \rho ( u ) $ is positive, non-increasing and tends to zero at a rate faster than exponential as $ u \rightarrow \infty $. A precise asymptotic estimate is given by the de Bruijn–Alladi formula [a1], [a3]:
$$ \rho ( u ) = ( 1 + O ( { \frac{1}{u} } ) ) \sqrt { { \frac{\xi ^ \prime ( u ) }{2 \pi } } } \times $$
$$ \times { \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ { \xi ( u ) } { { \frac{e ^ {s} - 1 }{s} } } {ds } \right \} ( u > 1 ) , $$
where $\gamma$ is the Euler constant and $ \xi ( u ) $ is the unique positive solution of the equation $ e ^ {\xi ( u ) } = 1 + u \xi ( u ) $.
References
[a1] | K. Alladi, "The Turán–Kubilius inequality for integers without large prime factors" J. Reine Angew. Math. , 335 (1982) pp. 180–196 |
[a2] | N.G. de Bruijn, "On the number of positive integers $\leq x$ and free of prime factors $> y$" Nederl. Akad. Wetensch. Proc. Ser. A , 54 (1951) pp. 50–60 |
[a3] | N.G. de Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes" J. Indian Math. Soc. (N.S.) , 15 (1951) pp. 25–32 |
[a4] | A. Hildebrand, G. Tenenbaum, "Integers without large prime factors" J. de Théorie des Nombres de Bordeaux , 5 (1993) pp. 411–484 |
Dickman-function(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dickman-function(2)&oldid=54293