Difference between revisions of "Threshold order"
From Encyclopedia of Mathematics
(Start article: Threshold order) |
|||
Line 2: | Line 2: | ||
==References== | ==References== | ||
− | * Andreas Brandstädt, Van Bang Le; Jeremy P. Spinrad, "Graph classes: a survey". SIAM Monographs on Discrete Mathematics and Applications '''3'''. Society for Industrial and Applied Mathematics (1999) ISBN 978-0-898714-32-6 {{ZBL|0919.05001}} | + | * Andreas Brandstädt, Van Bang Le; Jeremy P. Spinrad, "Graph classes: a survey". SIAM Monographs on Discrete Mathematics and Applications '''3'''. Society for Industrial and Applied Mathematics (1999) {{ISBN|978-0-898714-32-6}} {{ZBL|0919.05001}} |
{{TEX|done}} | {{TEX|done}} |
Latest revision as of 18:13, 1 June 2023
A partial order on a finite set $P$ with the property that there is a weight function $w : P \rightarrow \mathbf{R}$ and a threshold $T$ such that $C$ is a chain (linearly ordered subset) if and only if $\sum_{x \in C} w(x) \le T$. The comparability graph of a threshold order is a threshold graph.
References
- Andreas Brandstädt, Van Bang Le; Jeremy P. Spinrad, "Graph classes: a survey". SIAM Monographs on Discrete Mathematics and Applications 3. Society for Industrial and Applied Mathematics (1999) ISBN 978-0-898714-32-6 Zbl 0919.05001
How to Cite This Entry:
Threshold order. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Threshold_order&oldid=53965
Threshold order. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Threshold_order&oldid=53965