Namespaces
Variants
Actions

Difference between revisions of "Threshold order"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Threshold order)
 
 
Line 2: Line 2:
  
 
==References==
 
==References==
* Andreas Brandstädt, Van Bang Le; Jeremy P. Spinrad, "Graph classes: a survey". SIAM Monographs on Discrete Mathematics and Applications '''3'''. Society for Industrial and Applied Mathematics (1999) ISBN 978-0-898714-32-6 {{ZBL|0919.05001}}
+
* Andreas Brandstädt, Van Bang Le; Jeremy P. Spinrad, "Graph classes: a survey". SIAM Monographs on Discrete Mathematics and Applications '''3'''. Society for Industrial and Applied Mathematics (1999) {{ISBN|978-0-898714-32-6}} {{ZBL|0919.05001}}
  
 
{{TEX|done}}
 
{{TEX|done}}

Latest revision as of 18:13, 1 June 2023

A partial order on a finite set $P$ with the property that there is a weight function $w : P \rightarrow \mathbf{R}$ and a threshold $T$ such that $C$ is a chain (linearly ordered subset) if and only if $\sum_{x \in C} w(x) \le T$. The comparability graph of a threshold order is a threshold graph.

References

  • Andreas Brandstädt, Van Bang Le; Jeremy P. Spinrad, "Graph classes: a survey". SIAM Monographs on Discrete Mathematics and Applications 3. Society for Industrial and Applied Mathematics (1999) ISBN 978-0-898714-32-6 Zbl 0919.05001
How to Cite This Entry:
Threshold order. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Threshold_order&oldid=53965