Difference between revisions of "Loxodrome"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(OldImage template added) |
||
Line 51: | Line 51: | ||
$$ | $$ | ||
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Strubecker, "Differentialgeometrie" , '''2. Theorie der Flächenmetrik''' , de Gruyter (1958)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Strubecker, "Differentialgeometrie" , '''2. Theorie der Flächenmetrik''' , de Gruyter (1958)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{OldImage}} |
Latest revision as of 18:40, 13 May 2023
A curve on a surface of revolution that cuts all the meridians at a constant angle $ \alpha $.
If $ \alpha $
is an acute or obtuse angle, then a loxodrome performs infinitely many windings about the pole, getting closer and closer to it.
Figure: l060970a
For surfaces of revolution whose first fundamental form can be written as
$$ ds ^ {2} = du ^ {2} + G ( u) d v ^ {2} , $$
the equation of a loxodrome is
$$ v \mathop{\rm cotan} \alpha = \pm \int\limits _ { u _ 0 } ^ { u } \frac{du }{ \sqrt {G ( u) } } . $$
For a sphere with first fundamental form
$$ d s ^ {2} = R ^ {2} ( d u ^ {2} + \cos ^ {2} u d v ^ {2} ) $$
the equation of a loxodrome is
$$ v \mathop{\rm cotan} \alpha = R \mathop{\rm ln} \mathop{\rm tan} \left ( \frac \pi {4} + \frac{u}{2R} \right ) . $$
References
[a1] | K. Strubecker, "Differentialgeometrie" , 2. Theorie der Flächenmetrik , de Gruyter (1958) |
Loxodrome. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Loxodrome&oldid=53943