Namespaces
Variants
Actions

Difference between revisions of "Heron formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎References: expand bibliodata)
(details)
 
Line 5: Line 5:
  
 
where $p=(a+b+c)/2$. Named after Heron (1st century A.D.).
 
where $p=(a+b+c)/2$. Named after Heron (1st century A.D.).
 
 
 
====Comments====
 
 
  
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger,   "Geometry" , '''1–2''' , Springer (1987) (Translated from French) {{ZBL|1153.51001}}</TD></TR>
+
<TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, "Geometry", '''1–2''', Springer (1987) (Translated from French) {{ZBL|1153.51001}}</TD></TR>
<TR><TD valign="top">[a2]</TD> <TD valign="top"> H.S.M. Coxeter,   "Introduction to geometry" , Wiley (1961) {{ZBL|0095.34502}}</TD></TR>
+
<TR><TD valign="top">[a2]</TD> <TD valign="top"> H.S.M. Coxeter, "Introduction to geometry", Wiley (1961) {{ZBL|0095.34502}}</TD></TR>
 
</table>
 
</table>

Latest revision as of 18:02, 17 April 2023

A formula expressing the surface area $S$ of a triangle in terms of its sides $a$, $b$ and $c$:

$$S=\sqrt{p(p-a)(p-b)(p-c)},$$

where $p=(a+b+c)/2$. Named after Heron (1st century A.D.).

References

[a1] M. Berger, "Geometry", 1–2, Springer (1987) (Translated from French) Zbl 1153.51001
[a2] H.S.M. Coxeter, "Introduction to geometry", Wiley (1961) Zbl 0095.34502
How to Cite This Entry:
Heron formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Heron_formula&oldid=53835
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article