Difference between revisions of "Analytic sheaf"
From Encyclopedia of Mathematics
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(details) |
||
Line 24: | Line 24: | ||
into $ F $ | into $ F $ | ||
for $ x \in X $. | for $ x \in X $. | ||
− | |||
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Coherent analytic sheaves" , Springer (1984) (Translated from German)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Coherent analytic sheaves" , Springer (1984) (Translated from German)</TD></TR> | ||
+ | </table> |
Latest revision as of 07:54, 16 April 2023
A sheaf $ F $
on an analytic space $ X $
such that for any point $ x \in X $
the set $ F _ {x} $
is a module over the ring $ {\mathcal O} _ {x} $
of germs of holomorphic functions at the point $ x $,
and such that the mapping $ (f , \alpha ) \rightarrow f \alpha $,
defined on the set of pairs $ ( f, \alpha ) $
where $ f \in {\mathcal O} _ {x} $,
$ \alpha \in F _ {x} $,
is a continuous mapping of $ {\mathcal O} \times F $
into $ F $
for $ x \in X $.
References
[a1] | H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German) |
[a2] | H. Grauert, R. Remmert, "Coherent analytic sheaves" , Springer (1984) (Translated from German) |
How to Cite This Entry:
Analytic sheaf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Analytic_sheaf&oldid=53809
Analytic sheaf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Analytic_sheaf&oldid=53809
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article