Difference between revisions of "Variational series"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(gather refs) |
||
Line 43: | Line 43: | ||
$ i = 1 \dots n $, | $ i = 1 \dots n $, | ||
the series of order statistics forms a non-homogeneous [[Markov chain|Markov chain]]. | the series of order statistics forms a non-homogeneous [[Markov chain|Markov chain]]. | ||
− | |||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Line 51: | Line 48: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> S.S. Wilks, "Mathematical statistics" , Wiley (1962)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR> | ||
+ | </table> |
Latest revision as of 09:08, 10 April 2023
series of order statistics
An arrangement of the values of a random sample $ ( x _ {1} \dots x _ {n} ) $ with distribution function $ F( x) $ in ascending sequence $ x _ {(} 1) \leq \dots \leq x _ {(} n) $. The series is used to construct the empirical distribution function $ {F _ {n} } ( x) = {m _ {x} } /n $, where $ m _ {x} $ is the number of terms of the series which are smaller than $ x $. Important characteristics of series of order statistics are its extremal terms ( $ x _ {(} 1) = \min _ {1 \leq i \leq n } x _ {i} $, $ x _ {(} n) = \max _ {1 \leq i \leq n } x _ {i} $) and the range $ R _ {n} = {x _ {(} n) } - {x _ {(} 1) } $. The densities of the distributions of the minimum and maximum terms of a series of order statistics in the case
$$ F ( x) = \int\limits _ {- \infty } ^ { x } p ( y) dy $$
are defined by the expressions
$$ p _ {(} 1) ( x) = n [ 1 - F ( x)] ^ {n - 1 } p ( x) $$
and
$$ p _ {(} n) ( x) = nF ^ { n - 1 } ( x) p( x). $$
Considered as a stochastic process with time index $ i $, $ i = 1 \dots n $, the series of order statistics forms a non-homogeneous Markov chain.
Comments
The phrase "variational series" is almost never used in the West. Cf. also Order statistic.
References
[1] | S.S. Wilks, "Mathematical statistics" , Wiley (1962) |
[a1] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986) |
Variational series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Variational_series&oldid=53729