Namespaces
Variants
Actions

Difference between revisions of "Thompson subgroup"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX done)
(gather refs)
 
Line 7: Line 7:
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  J.G. Thompson,  "A replacement theorem for $p$-groups and a conjecture"  ''J. Algebra'' , '''13'''  (1969)  pp. 149–151  {{ZBL|0194.03902}}</TD></TR>
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  J.G. Thompson,  "A replacement theorem for $p$-groups and a conjecture"  ''J. Algebra'' , '''13'''  (1969)  pp. 149–151  {{ZBL|0194.03902}}</TD></TR>
 
<TR><TD valign="top">[2]</TD> <TD valign="top">  D. Gorenstein,  "Finite groups" , Harper &amp; Row  (1968)  {{ZBL|0185.05701}}</TD></TR>
 
<TR><TD valign="top">[2]</TD> <TD valign="top">  D. Gorenstein,  "Finite groups" , Harper &amp; Row  (1968)  {{ZBL|0185.05701}}</TD></TR>
</table>
 
 
====Comments====
 
 
 
====References====
 
<table>
 
 
<TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Doerk,  T. Hawkes,  "Finite soluble groups" , de Gruyter  (1992)  pp. 214  {{ZBL|0753.20001}}</TD></TR>
 
<TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Doerk,  T. Hawkes,  "Finite soluble groups" , de Gruyter  (1992)  pp. 214  {{ZBL|0753.20001}}</TD></TR>
 
</table>
 
</table>

Latest revision as of 14:51, 8 April 2023

2020 Mathematics Subject Classification: Primary: 20D25 [MSN][ZBL]

The characteristic subgroup of a $p$-group generated by all Abelian subgroups of maximal order. Introduced by J.G. Thompson [1].

References

[1] J.G. Thompson, "A replacement theorem for $p$-groups and a conjecture" J. Algebra , 13 (1969) pp. 149–151 Zbl 0194.03902
[2] D. Gorenstein, "Finite groups" , Harper & Row (1968) Zbl 0185.05701
[a1] K. Doerk, T. Hawkes, "Finite soluble groups" , de Gruyter (1992) pp. 214 Zbl 0753.20001
How to Cite This Entry:
Thompson subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thompson_subgroup&oldid=53678
This article was adapted from an original article by N.N. Vil'yams (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article