Namespaces
Variants
Actions

Difference between revisions of "Brandt-Lickorish-Millett-Ho polynomial"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Tex done)
m (OldImage template added)
 
Line 16: Line 16:
 
<TR><TD valign="top">[a2]</TD> <TD valign="top">  C.F. Ho,  "A new polynomial for knots and links; preliminary report"  ''Abstracts Amer. Math. Soc.'' , '''6''' :  4  (1985)  pp. 300</TD></TR>
 
<TR><TD valign="top">[a2]</TD> <TD valign="top">  C.F. Ho,  "A new polynomial for knots and links; preliminary report"  ''Abstracts Amer. Math. Soc.'' , '''6''' :  4  (1985)  pp. 300</TD></TR>
 
</table>
 
</table>
 +
 +
{{OldImage}}

Latest revision as of 08:42, 26 March 2023

2020 Mathematics Subject Classification: Primary: 57M27 [MSN][ZBL]

An invariant of non-oriented links in $\mathbf{R}^3$, invented at the beginning of 1985 [a1], [a2] and generalized by L.H. Kauffman (the Kauffman polynomial; cf. also Link).

It satisfies the four term skein relation for a Kauffman skein quadruple (cf. also Conway skein triple) $$ Q_{L_{+}}(z) + Q_{L_{-}}(z) = z\left({ Q_{L_{0}}(z) + Q_{L_{\infty}}(z) }\right) $$ and is normalized to be $1$ for the trivial knot.

References

[a1] R.D. Brandt, W.B.R. Lickorish, K.C. Millett, "A polynomial invariant for unoriented knots and links" Invent. Math. , 84 (1986) pp. 563–573
[a2] C.F. Ho, "A new polynomial for knots and links; preliminary report" Abstracts Amer. Math. Soc. , 6 : 4 (1985) pp. 300


🛠️ This page contains images that should be replaced by better images in the SVG file format. 🛠️
How to Cite This Entry:
Brandt-Lickorish-Millett-Ho polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Brandt-Lickorish-Millett-Ho_polynomial&oldid=53321
This article was adapted from an original article by Jozef Przytycki (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article