Difference between revisions of "Foulis semigroup"
From Encyclopedia of Mathematics
(Start article: Foulis semigroup) |
m (details) |
||
Line 6: | Line 6: | ||
====References==== | ====References==== | ||
− | * T.S. Blyth, "Lattices and Ordered Algebraic Structures" Springer (2005) ISBN 1852339055 {{ZBL|1073.06001}} | + | * T.S. Blyth, "Lattices and Ordered Algebraic Structures", Springer (2005) {{ISBN|1852339055}} {{ZBL|1073.06001}} |
* David J. Foulis, "Baer ∗-semigroups", ''Proc. Am. Math. Soc.'' '''11''' (1960) 648-654 {{ZBL|0239.20074}} | * David J. Foulis, "Baer ∗-semigroups", ''Proc. Am. Math. Soc.'' '''11''' (1960) 648-654 {{ZBL|0239.20074}} | ||
− | * Ivan Rival (ed.),"Algorithms and Order", Kluwer (1989) ISBN 940107691X {{ZBL|0709.68004}} | + | * Ivan Rival (ed.), "Algorithms and Order", Kluwer (1989) {{ISBN|940107691X}} {{ZBL|0709.68004}} |
Latest revision as of 07:54, 19 March 2023
2020 Mathematics Subject Classification: Primary: 20M10 [MSN][ZBL]
Baer $*$-semigroup
A Baer semigroup with involution. Foulis showed that the set of closed projections forms an orthomodular lattice, and every such lattice arises in this way.
References
- T.S. Blyth, "Lattices and Ordered Algebraic Structures", Springer (2005) ISBN 1852339055 Zbl 1073.06001
- David J. Foulis, "Baer ∗-semigroups", Proc. Am. Math. Soc. 11 (1960) 648-654 Zbl 0239.20074
- Ivan Rival (ed.), "Algorithms and Order", Kluwer (1989) ISBN 940107691X Zbl 0709.68004
How to Cite This Entry:
Foulis semigroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Foulis_semigroup&oldid=52945
Foulis semigroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Foulis_semigroup&oldid=52945