Difference between revisions of "Liouville number"
From Encyclopedia of Mathematics
(MSC 11J) |
m (details) |
||
Line 5: | Line 5: | ||
$$\left|\alpha-\frac pq\right|<q^{-\nu}$$ | $$\left|\alpha-\frac pq\right|<q^{-\nu}$$ | ||
− | has infinitely many integer solutions $p$ and $q$ satisfying the conditions $q>0$, $(p,q)=1$. The fact that a Liouville number is transcendental (cf. [[Transcendental number|Transcendental number]]) follows from the Liouville theorem (cf. [[Liouville theorems|Liouville theorems]]). These numbers were studied by J. Liouville | + | has infinitely many integer solutions $p$ and $q$ satisfying the conditions $q>0$, $(p,q)=1$. The fact that a Liouville number is transcendental (cf. [[Transcendental number|Transcendental number]]) follows from the Liouville theorem (cf. [[Liouville theorems|Liouville theorems]]). These numbers were studied by [[Joseph Liouville|J. Liouville]] {{Cite|1}}. |
Examples of Liouville numbers are: | Examples of Liouville numbers are: | ||
Line 16: | Line 16: | ||
====References==== | ====References==== | ||
− | |||
− | |||
+ | * {{Ref|1}} J. Liouville, "Sur des classes très étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques" ''C.R. Acad. Sci. Paris'' , '''18''' (1844) pp. 883–885 | ||
+ | * {{Ref|2}} A.O. Gel'fond, "Transcendental and algebraic numbers" , Dover, reprint (1960) (Translated from Russian) | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== |
Revision as of 07:23, 16 March 2023
2020 Mathematics Subject Classification: Primary: 11J [MSN][ZBL]
A real number $\alpha$ such that for any $\nu\geq1$ the inequality
$$\left|\alpha-\frac pq\right|<q^{-\nu}$$
has infinitely many integer solutions $p$ and $q$ satisfying the conditions $q>0$, $(p,q)=1$. The fact that a Liouville number is transcendental (cf. Transcendental number) follows from the Liouville theorem (cf. Liouville theorems). These numbers were studied by J. Liouville [1].
Examples of Liouville numbers are:
$$\alpha_1=\sum_{n=1}^\infty2^{-n!},$$
$$\alpha_2=\sum_{n=1}^\infty(-1)^n2^{-3^n},$$
$$\alpha_3=\sum_{n=1}^\infty(10^{n!})^{-1}.$$
References
- [1] J. Liouville, "Sur des classes très étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques" C.R. Acad. Sci. Paris , 18 (1844) pp. 883–885
- [2] A.O. Gel'fond, "Transcendental and algebraic numbers" , Dover, reprint (1960) (Translated from Russian)
Comments
References
[a1] | O. Perron, "Die Lehre von den Kettenbrüchen" , 1 , Teubner (1977) pp. Sect. 35 |
[a2] | O. Perron, "Irrationalzahlen" , Chelsea, reprint (1948) |
How to Cite This Entry:
Liouville number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Liouville_number&oldid=52635
Liouville number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Liouville_number&oldid=52635
This article was adapted from an original article by S.V. Kotov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article