Namespaces
Variants
Actions

Difference between revisions of "Pauli matrices"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (fix tex)
m (fixing spaces)
 
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
Certain special constant Hermitian  $  ( 2 \times 2) $-
+
Certain special constant Hermitian  $  ( 2 \times 2) $-matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin ($  \vec{s} = (\hbar /2) \vec{\sigma} $)  
matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin ( $  \vec{s} = (\hbar /2) \vec{\sigma} $)  
 
 
and magnetic moment  $  ( \vec{\mu} = ( e \hbar /2mc) \vec{\sigma} ) $
 
and magnetic moment  $  ( \vec{\mu} = ( e \hbar /2mc) \vec{\sigma} ) $
 
of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units  $  \hbar $)  
 
of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units  $  \hbar $)  
Line 20: Line 19:
 
$$  
 
$$  
 
\sigma _ {1}  =  \left (  
 
\sigma _ {1}  =  \left (  
\begin{array}{lr}
+
\begin{array}{cc}
 
  0  & 1  \\
 
  0  & 1  \\
 
  1  & 0  \\
 
  1  & 0  \\
Line 26: Line 25:
 
  \right ) ; \ \  
 
  \right ) ; \ \  
 
\sigma _ {2}  =  \left (  
 
\sigma _ {2}  =  \left (  
\begin{array}{lr}
+
\begin{array}{cc}
 
  0  &- i  \\
 
  0  &- i  \\
 
  i  & 0  \\
 
  i  & 0  \\
Line 32: Line 31:
 
  \right ) ; \ \  
 
  \right ) ; \ \  
 
\sigma _ {3}  =  \left (  
 
\sigma _ {3}  =  \left (  
\begin{array}{lr}
+
\begin{array}{cc}
 
  1  & 0  \\
 
  1  & 0  \\
 
  0  &- 1  \\
 
  0  &- 1  \\
Line 54: Line 53:
 
$$  
 
$$  
 
\sigma _ {0}  =  \left (  
 
\sigma _ {0}  =  \left (  
\begin{array}{lr}
+
\begin{array}{cc}
 
  1  & 0  \\
 
  1  & 0  \\
 
  0  & 1  \\
 
  0  & 1  \\
Line 84: Line 83:
 
$$  
 
$$  
 
\gamma _ {0}  =  \left (  
 
\gamma _ {0}  =  \left (  
\begin{array}{lr}
+
\begin{array}{cc}
 
\sigma _ {0}  & 0  \\
 
\sigma _ {0}  & 0  \\
 
  0  &-
 
  0  &-
Line 91: Line 90:
 
  \right ) ; \ \  
 
  \right ) ; \ \  
 
\gamma _ {k}  =  \left (  
 
\gamma _ {k}  =  \left (  
\begin{array}{lr}
+
\begin{array}{cc}
 
  0  &\sigma _ {k}  \\
 
  0  &\sigma _ {k}  \\
 
- \sigma _ {k}  & 0  \\
 
- \sigma _ {k}  & 0  \\
Line 103: Line 102:
 
$  i \sigma _ {2} $,  
 
$  i \sigma _ {2} $,  
 
$  i \sigma _ {3} $
 
$  i \sigma _ {3} $
form a four-dimensional subalgebra of the algebra of complex  $  ( 2 \times 2) $-
+
form a four-dimensional subalgebra of the algebra of complex  $  ( 2 \times 2) $-matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. [[Quaternion|Quaternion]]. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries  $  \mathop{\rm SU} ( 2) $.  
matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. [[Quaternion|Quaternion]]. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries  $  \mathop{\rm SU} ( 2) $.  
+
In this case they are generators of a  $  2 $-dimensional representation of  $  \mathop{\rm SU} ( 2) $
In this case they are generators of a  $  2 $-
 
dimensional representation of  $  \mathop{\rm SU} ( 2) $
 
 
and are denoted by  $  \tau _ {1} $,  
 
and are denoted by  $  \tau _ {1} $,  
 
$  \tau _ {2} $
 
$  \tau _ {2} $
Line 117: Line 114:
 
  ( \tau _ {1} + i \tau _ {2} )  = \  
 
  ( \tau _ {1} + i \tau _ {2} )  = \  
 
\left (  
 
\left (  
\begin{array}{lr}
+
\begin{array}{cc}
 
  0  & 1  \\
 
  0  & 1  \\
 
  0  & 0  \\
 
  0  & 0  \\
Line 126: Line 123:
 
  ( \tau _ {1} - i \tau _ {2} )  = \  
 
  ( \tau _ {1} - i \tau _ {2} )  = \  
 
\left (  
 
\left (  
\begin{array}{lr}
+
\begin{array}{cc}
 
  0  & 0  \\
 
  0  & 0  \\
 
  1  & 0  \\
 
  1  & 0  \\

Latest revision as of 01:11, 19 March 2022


Certain special constant Hermitian $ ( 2 \times 2) $-matrices with complex entries. They were introduced by W. Pauli (1927) to describe spin ($ \vec{s} = (\hbar /2) \vec{\sigma} $) and magnetic moment $ ( \vec{\mu} = ( e \hbar /2mc) \vec{\sigma} ) $ of an electron. His equation describes correctly in the non-relativistic case particles of spin 1/2 (in units $ \hbar $) and can be obtained from the Dirac equation for $ v/c \ll 1 $. In explicit form the Pauli matrices are:

$$ \sigma _ {1} = \left ( \begin{array}{cc} 0 & 1 \\ 1 & 0 \\ \end{array} \right ) ; \ \ \sigma _ {2} = \left ( \begin{array}{cc} 0 &- i \\ i & 0 \\ \end{array} \right ) ; \ \ \sigma _ {3} = \left ( \begin{array}{cc} 1 & 0 \\ 0 &- 1 \\ \end{array} \right ) . $$

Their eigen values are $ \pm 1 $. The Pauli matrices satisfy the following algebraic relations:

$$ \sigma _ {i} \sigma _ {k} + \sigma _ {k} \sigma _ {i} = 2 \delta _ {ik} , $$

$$ \sigma _ {i} \sigma _ {k} - \sigma _ {k} \sigma _ {i} = 2i \epsilon _ {ikl} \sigma _ {l} . $$

Together with the unit matrix

$$ \sigma _ {0} = \left ( \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \end{array} \right ) $$

the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded. They act on two-component spin functions $ \psi _ {A} $, $ A = 1, 2 $, and are transformed under a rotation of the coordinate system by a linear two-valued representation of the rotation group. Under a rotation by an infinitesimal angle $ \theta $ around an axis with a directed unit vector $ \mathbf n $, a spinor $ \psi _ {A} $ is transformed according to the formula

$$ \psi _ {A} = \left [ \sigma _ {0,AB } + \frac{1}{2} i \theta ( \sigma \cdot \mathbf n ) _ {AB} \right ] \psi _ {B} ^ \prime , $$

$$ \sigma \cdot \mathbf n = \sigma _ {1} n _ {x} + \sigma _ {2} n _ {y} + \sigma _ {3} n _ {z} . $$

From the Pauli matrices one can form the Dirac matrices $ \gamma _ \alpha $, $ \alpha = 0, 1, 2, 3 $:

$$ \gamma _ {0} = \left ( \begin{array}{cc} \sigma _ {0} & 0 \\ 0 &- \sigma _ {0} \\ \end{array} \right ) ; \ \ \gamma _ {k} = \left ( \begin{array}{cc} 0 &\sigma _ {k} \\ - \sigma _ {k} & 0 \\ \end{array} \right ) ; \ \ k = 1, 2, 3. $$

The real linear combinations of $ \sigma _ {0} $, $ i \sigma _ {1} $, $ i \sigma _ {2} $, $ i \sigma _ {3} $ form a four-dimensional subalgebra of the algebra of complex $ ( 2 \times 2) $-matrices (under matrix multiplication) that is isomorphic to the simplest system of hypercomplex numbers, the quaternions, cf. Quaternion. They are used whenever an elementary particle has a discrete parameter taking only two values, for example, to describe an isospin nucleon (a proton-neutron). Quite generally, the Pauli matrices are used not only to describe isotopic space, but also in the formalism of the group of inner symmetries $ \mathop{\rm SU} ( 2) $. In this case they are generators of a $ 2 $-dimensional representation of $ \mathop{\rm SU} ( 2) $ and are denoted by $ \tau _ {1} $, $ \tau _ {2} $ and $ \tau _ {3} $. Sometimes it is convenient to use the linear combinations

$$ \tau ^ {+} = \frac{1}{2} ( \tau _ {1} + i \tau _ {2} ) = \ \left ( \begin{array}{cc} 0 & 1 \\ 0 & 0 \\ \end{array} \right ) ; \ \ \tau ^ {-} = \frac{1}{2} ( \tau _ {1} - i \tau _ {2} ) = \ \left ( \begin{array}{cc} 0 & 0 \\ 1 & 0 \\ \end{array} \right ) . $$

In certain cases one introduces for a relativistically covariant description of two-component spinor functions instead of the Pauli matrices, matrices $ S _ \alpha $ related by means of the following identities:

$$ \tag{1 } S _ {0} S _ {0} ^ \star + \sigma _ {0} = 0; \ \ S _ {i} S _ {0} ^ \star = \sigma _ {i} ,\ \ i = 1, 2, 3, $$

where the symbol $ \star $ denotes complex conjugation. The matrices $ S _ \alpha $ satisfy the commutator relations

$$ \tag{2 } S _ \alpha S _ \beta ^ \star + S _ \beta S _ \alpha ^ \star = 2 \eta _ {\alpha , \beta } , $$

where $ \eta _ {\alpha , \beta } $ are the components of the metric tensor of the Minkowski space of signature $ + 2 $. The formulas (1) and (2) make it possible to generalize the Pauli matrices covariantly to an arbitrary curved space:

$$ S _ \alpha S _ \beta ^ \star + S _ \beta S _ \alpha ^ \star = 2g _ {\alpha \beta } , $$

where $ g _ {\alpha \beta } $ are the components of the metric tensor of the curved space.

References

[1] W. Pauli, , Works on quantum theory , 1–2 , Moscow (1975–1977) (In Russian; translated from German)
[2] N.F. Nelina, "Physics of elementary particles" , Moscow (1977) (In Russian)
[3] D. Bril, J.A. Wheeler, , The latest problems on gravitation , Moscow (1961) pp. 381–427 (In Russian)

Comments

References

[a1] W. Pauli, "Zur Quantenmechanik des magnetischen Elektrons" Z. Phys. , 43 : 601
[a2] W. Pauli (ed.) , Handbuch der Physik , 24 , Springer (1933)
[a3] R.M. Wald, "General relativity" , Univ. Chicago Press (1984) pp. Chapt. 4
[a4] Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, "Analysis, manifolds and physics" , North-Holland (1982) (Translated from French)
How to Cite This Entry:
Pauli matrices. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pauli_matrices&oldid=52212
This article was adapted from an original article by V.G. Krechet (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article