Difference between revisions of "Hotelling test"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fixing superscripts) |
||
Line 11: | Line 11: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | '' $ T ^ {2} $- | + | '' $ T ^ {2} $-test'' |
− | test'' | ||
A test intended for testing a hypothesis $ H _ {0} $ | A test intended for testing a hypothesis $ H _ {0} $ | ||
− | according to which the true value of the unknown vector $ \mu = ( \mu _ {1} \dots \mu _ {p} ) $ | + | according to which the true value of the unknown vector $ \mu = ( \mu _ {1}, \dots, \mu _ {p} ) $ |
− | of mathematical expectation of a non-degenerate $ p $- | + | of mathematical expectation of a non-degenerate $ p $-dimensional normal law $ N ( \mu , B) $ |
− | dimensional normal law $ N ( \mu , B) $ | ||
whose covariance matrix $ B $ | whose covariance matrix $ B $ | ||
− | is also unknown, is the vector $ \mu = ( \mu _ {10} \dots \mu _ {p0} ) $. | + | is also unknown, is the vector $ \mu = ( \mu _ {10}, \dots, \mu _ {p0} ) $. |
− | Hotelling's test is based on the following result. Let $ X _ {1} \dots X _ {n} $ | + | Hotelling's test is based on the following result. Let $ X _ {1}, \dots, X _ {n} $ |
− | be independent $ p $- | + | be independent $ p $-dimensional random vectors, $ n - 1 \geq p $, |
− | dimensional random vectors, $ n - 1 \geq p $, | ||
subject to the non-degenerate normal law $ N ( \mu , B) $, | subject to the non-degenerate normal law $ N ( \mu , B) $, | ||
and let | and let | ||
Line 28: | Line 25: | ||
$$ | $$ | ||
T ^ {2} = \ | T ^ {2} = \ | ||
− | n ( \overline{X} | + | n ( \overline{X} - \mu _ {0} ) ^ {T } |
− | S ^ {-} | + | S ^ {-1} ( \overline{X} - \mu _ {0} ), |
$$ | $$ | ||
Line 46: | Line 43: | ||
\sum _ {i = 1 } ^ { n } | \sum _ {i = 1 } ^ { n } | ||
− | ( X _ {i} - \overline{X} | + | ( X _ {i} - \overline{X} ) ( X _ {i} - \overline{X} ) ^ {T } |
$$ | $$ | ||
Line 61: | Line 58: | ||
$$ | $$ | ||
− | has the non-central [[Fisher-F-distribution|Fisher $ F $- | + | has the non-central [[Fisher-F-distribution|Fisher $ F $-distribution]] with $ p $ |
− | distribution]] with $ p $ | ||
and $ n - p $ | and $ n - p $ | ||
degrees of freedom and non-centrality parameter | degrees of freedom and non-centrality parameter | ||
$$ | $$ | ||
− | n ( \mu - \mu _ {0} ) ^ {T } B ^ {-} | + | n ( \mu - \mu _ {0} ) ^ {T } B ^ {-1} ( \mu - \mu _ {0} ); |
$$ | $$ | ||
the statistic $ T ^ {2} $ | the statistic $ T ^ {2} $ | ||
− | has the [[Hotelling-T^2-distribution|Hotelling $ T ^ {2} $- | + | has the [[Hotelling-T^2-distribution|Hotelling $ T ^ {2} $-distribution]]. Consequently, to test the hypothesis $ H _ {0} $: |
− | distribution]]. Consequently, to test the hypothesis $ H _ {0} $: | ||
$ \mu = \mu _ {0} $ | $ \mu = \mu _ {0} $ | ||
against the alternative $ H _ {1} $: | against the alternative $ H _ {1} $: | ||
$ \mu \neq \mu _ {0} $ | $ \mu \neq \mu _ {0} $ | ||
one can compute the values of the statistic $ F $ | one can compute the values of the statistic $ F $ | ||
− | based on realizations of the independent random vectors $ X _ {1} \dots X _ {n} $ | + | based on realizations of the independent random vectors $ X _ {1}, \dots, X _ {n} $ |
− | from the non-degenerate $ p $- | + | from the non-degenerate $ p $-dimensional normal law $ N ( \mu , B) $, |
− | dimensional normal law $ N ( \mu , B) $, | ||
which under the hypothesis $ H _ {0} $ | which under the hypothesis $ H _ {0} $ | ||
− | has the central $ F $- | + | has the central $ F $-distribution with $ p $ |
− | distribution with $ p $ | ||
and $ n - p $ | and $ n - p $ | ||
degrees of freedom. Using Hotelling's test with significance level $ \alpha $, | degrees of freedom. Using Hotelling's test with significance level $ \alpha $, | ||
Line 88: | Line 81: | ||
must be rejected if $ F \geq F _ \alpha ( p, n - p) $, | must be rejected if $ F \geq F _ \alpha ( p, n - p) $, | ||
where $ F _ \alpha ( p, n - p) $ | where $ F _ \alpha ( p, n - p) $ | ||
− | is the $ \alpha $- | + | is the $ \alpha $-quantile of the $ F $-distribution. The connection between Hotelling's test and the generalized likelihood-ratio test should be mentioned. Let |
− | quantile of the $ F $- | ||
− | distribution. The connection between Hotelling's test and the generalized likelihood-ratio test should be mentioned. Let | ||
$$ | $$ | ||
L ( \mu , B) = \ | L ( \mu , B) = \ | ||
− | L ( X _ {1} \dots X _ {n} ; \mu , B) = | + | L ( X _ {1}, \dots, X _ {n} ; \mu , B) = |
$$ | $$ | ||
Line 100: | Line 91: | ||
= \ | = \ | ||
− | \frac{| B ^ {-} | + | \frac{| B ^ {-1} | ^ {n/2} }{( 2 \pi ) ^ {np/2} |
} | } | ||
\mathop{\rm exp} \left \{ - { | \mathop{\rm exp} \left \{ - { | ||
\frac{1}{2} | \frac{1}{2} | ||
− | } \sum _ {i = 1 } ^ { n } ( X _ {i} - \mu ) ^ {T } B ^ {-} | + | } \sum _ {i = 1 } ^ { n } ( X _ {i} - \mu ) ^ {T } B ^ {-1} ( X _ {i} - \mu ) \right \} |
$$ | $$ | ||
− | be the likelihood function computed from the sample $ X _ {1} \dots X _ {n} $. | + | be the likelihood function computed from the sample $ X _ {1}, \dots, X _ {n} $. |
The generalized likelihood-ratio test for testing the simple hypothesis $ H _ {0} $: | The generalized likelihood-ratio test for testing the simple hypothesis $ H _ {0} $: | ||
$ \mu = \mu _ {0} $ | $ \mu = \mu _ {0} $ | ||
Line 116: | Line 107: | ||
$$ | $$ | ||
\lambda = \ | \lambda = \ | ||
− | \lambda ( X _ {1} \dots X _ {n} ) = \ | + | \lambda ( X _ {1}, \dots, X _ {n} ) = \ |
\frac{\sup _ { B } L ( \mu _ {0} , B) }{\sup _ {\mu , B } L ( \mu , B) } | \frac{\sup _ { B } L ( \mu _ {0} , B) }{\sup _ {\mu , B } L ( \mu , B) } |
Latest revision as of 01:40, 5 March 2022
$ T ^ {2} $-test
A test intended for testing a hypothesis $ H _ {0} $ according to which the true value of the unknown vector $ \mu = ( \mu _ {1}, \dots, \mu _ {p} ) $ of mathematical expectation of a non-degenerate $ p $-dimensional normal law $ N ( \mu , B) $ whose covariance matrix $ B $ is also unknown, is the vector $ \mu = ( \mu _ {10}, \dots, \mu _ {p0} ) $. Hotelling's test is based on the following result. Let $ X _ {1}, \dots, X _ {n} $ be independent $ p $-dimensional random vectors, $ n - 1 \geq p $, subject to the non-degenerate normal law $ N ( \mu , B) $, and let
$$ T ^ {2} = \ n ( \overline{X} - \mu _ {0} ) ^ {T } S ^ {-1} ( \overline{X} - \mu _ {0} ), $$
where
$$ \overline{X}\; = { \frac{1}{n} } \sum _ {i = 1 } ^ { n } X _ {i} $$
and
$$ S = \frac{1}{n - 1 } \sum _ {i = 1 } ^ { n } ( X _ {i} - \overline{X} ) ( X _ {i} - \overline{X} ) ^ {T } $$
are maximum-likelihood estimators for the unknown parameters $ \mu $ and $ B $. Then the statistic
$$ F = \ \frac{n - p }{p ( n - 1) } T ^ {2} $$
has the non-central Fisher $ F $-distribution with $ p $ and $ n - p $ degrees of freedom and non-centrality parameter
$$ n ( \mu - \mu _ {0} ) ^ {T } B ^ {-1} ( \mu - \mu _ {0} ); $$
the statistic $ T ^ {2} $ has the Hotelling $ T ^ {2} $-distribution. Consequently, to test the hypothesis $ H _ {0} $: $ \mu = \mu _ {0} $ against the alternative $ H _ {1} $: $ \mu \neq \mu _ {0} $ one can compute the values of the statistic $ F $ based on realizations of the independent random vectors $ X _ {1}, \dots, X _ {n} $ from the non-degenerate $ p $-dimensional normal law $ N ( \mu , B) $, which under the hypothesis $ H _ {0} $ has the central $ F $-distribution with $ p $ and $ n - p $ degrees of freedom. Using Hotelling's test with significance level $ \alpha $, $ H _ {0} $ must be rejected if $ F \geq F _ \alpha ( p, n - p) $, where $ F _ \alpha ( p, n - p) $ is the $ \alpha $-quantile of the $ F $-distribution. The connection between Hotelling's test and the generalized likelihood-ratio test should be mentioned. Let
$$ L ( \mu , B) = \ L ( X _ {1}, \dots, X _ {n} ; \mu , B) = $$
$$ = \ \frac{| B ^ {-1} | ^ {n/2} }{( 2 \pi ) ^ {np/2} } \mathop{\rm exp} \left \{ - { \frac{1}{2} } \sum _ {i = 1 } ^ { n } ( X _ {i} - \mu ) ^ {T } B ^ {-1} ( X _ {i} - \mu ) \right \} $$
be the likelihood function computed from the sample $ X _ {1}, \dots, X _ {n} $. The generalized likelihood-ratio test for testing the simple hypothesis $ H _ {0} $: $ \mu = \mu _ {0} $ against the compound alternative $ H _ {1} $: $ \mu \neq \mu _ {0} $ is constructed from the statistic
$$ \lambda = \ \lambda ( X _ {1}, \dots, X _ {n} ) = \ \frac{\sup _ { B } L ( \mu _ {0} , B) }{\sup _ {\mu , B } L ( \mu , B) } . $$
The statistic $ \lambda $ and the statistics $ T ^ {2} $ and $ F $ are related by:
$$ \lambda ^ {2/n} = \ \frac{n - 1 }{T ^ {2} + n - 1 } = \ \frac{n - p }{pF + n - p } . $$
For testing the hypothesis $ H _ {0} $: $ \mu = \mu _ {0} $, Hotelling's test is uniformly most powerful among all tests that are invariant under similarity transformations (see Most-powerful test; Invariant test).
References
[1] | T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1984) |
[2] | C.R. Rao, "Linear statistical inference and its applications" , Wiley (1973) |
Hotelling test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hotelling_test&oldid=52192