Difference between revisions of "Transversal system"
m (fixing spaces) |
m (fixing dots) |
||
Line 15: | Line 15: | ||
A system $ T _ {0} ( m, t) $ | A system $ T _ {0} ( m, t) $ | ||
of sets defined for a given collection of $ m $ | of sets defined for a given collection of $ m $ | ||
− | pairwise-disjoint finite sets $ S _ {1} \dots S _ {m} $, | + | pairwise-disjoint finite sets $ S _ {1}, \dots, S _ {m} $, |
each of which has cardinality $ t $. | each of which has cardinality $ t $. | ||
Namely: a transversal system $ T _ {0} ( m, t) $ | Namely: a transversal system $ T _ {0} ( m, t) $ | ||
is a system of $ t ^ {2} $ | is a system of $ t ^ {2} $ | ||
− | sets $ Y _ {1} \dots Y _ {t ^ {2} } $ (blocks or transversals), containing $ m $ | + | sets $ Y _ {1}, \dots, Y _ {t ^ {2} } $ (blocks or transversals), containing $ m $ |
elements each and such that: | elements each and such that: | ||
1) $ | Y _ {j} \cap S _ {i} | = 1 $; | 1) $ | Y _ {j} \cap S _ {i} | = 1 $; | ||
− | $ i = 1 \dots m $; | + | $ i = 1, \dots, m $; |
− | $ j = 1 \dots t ^ {2} $; | + | $ j = 1, \dots, t ^ {2} $; |
2) $ | Y _ {j} \cap Y _ {k} | \leq 1 $ | 2) $ | Y _ {j} \cap Y _ {k} | \leq 1 $ | ||
Line 56: | Line 56: | ||
====Comments==== | ====Comments==== | ||
− | The finite sets $ S _ {1} \dots S _ {m} $ | + | The finite sets $ S _ {1}, \dots, S _ {m} $ |
making up the design are called point classes or point groups. | making up the design are called point classes or point groups. | ||
Line 72: | Line 72: | ||
Let $ D $ | Let $ D $ | ||
be a $ T _ {0} ( k+ m, s) $ | be a $ T _ {0} ( k+ m, s) $ | ||
− | with point classes $ P _ {1} \dots P _ {k} $ | + | with point classes $ P _ {1}, \dots, P _ {k} $ |
− | and $ Q _ {1} \dots Q _ {m} $, | + | and $ Q _ {1}, \dots, Q _ {m} $, |
let $ T $ | let $ T $ | ||
be a $ t $-subset of $ Q _ {1} \cup {} \dots \cup Q _ {m} $ | be a $ t $-subset of $ Q _ {1} \cup {} \dots \cup Q _ {m} $ | ||
and put $ t _ {i} = | T \cap Q _ {i} | $ | and put $ t _ {i} = | T \cap Q _ {i} | $ | ||
− | for $ i = 1 \dots m $, | + | for $ i = 1, \dots, m $, |
and $ u _ {B} = | B \cap T | $ | and $ u _ {B} = | B \cap T | $ | ||
for every block $ B $ | for every block $ B $ | ||
of $ D $. | of $ D $. | ||
Assume the existence of $ T _ {0} ( k , t _ {i} ) $ | Assume the existence of $ T _ {0} ( k , t _ {i} ) $ | ||
− | for $ i = 1 \dots m $ | + | for $ i = 1, \dots, m $ |
and of $ T _ {u _ {B} } ( k , n + u _ {B} ) $ | and of $ T _ {u _ {B} } ( k , n + u _ {B} ) $ | ||
for each block $ B $ | for each block $ B $ |
Latest revision as of 06:33, 22 February 2022
transversal design, transversal scheme, $ T $-system
A system $ T _ {0} ( m, t) $ of sets defined for a given collection of $ m $ pairwise-disjoint finite sets $ S _ {1}, \dots, S _ {m} $, each of which has cardinality $ t $. Namely: a transversal system $ T _ {0} ( m, t) $ is a system of $ t ^ {2} $ sets $ Y _ {1}, \dots, Y _ {t ^ {2} } $ (blocks or transversals), containing $ m $ elements each and such that:
1) $ | Y _ {j} \cap S _ {i} | = 1 $; $ i = 1, \dots, m $; $ j = 1, \dots, t ^ {2} $;
2) $ | Y _ {j} \cap Y _ {k} | \leq 1 $ for $ j \neq k $.
In a transversal design, any two elements $ a \in S _ {i} $ and $ b \in S _ {j} $, $ i \neq j $, occur together in exactly one block. The existence of a transversal design $ T _ {0} ( m, t) $ is equivalent to the existence of an orthogonal array $ \mathop{\rm OA} ( t, m) $.
Transversal designs are used in recursive constructions of block designs (cf. Block design).
A set of $ t $ transversals in $ T _ {0} ( m, t) $ is called parallel if no two of them intersect. If a transversal design $ T _ {0} ( m, t) $ contains $ e $ (or more) parallel classes, then it is denoted by $ T _ {e} ( m, t) $.
Some of the basic properties of transversal systems are:
a) if $ T _ {d} ( m, s) $ and $ T _ {e} ( m, t) $ exist, then so does $ T _ {de} ( m, st) $;
b) $ T _ {t} ( m - 1, t) $ exists if and only if $ T _ {0} ( m, t) $ exists.
References
[1] | M. Hall, "Combinatorial theory" , Wiley (1986) |
[2] | H. Hanani, "The existence and construction of balanced incomplete block designs" Ann. Math. Stat. , 32 (1961) pp. 361–386 |
Comments
The finite sets $ S _ {1}, \dots, S _ {m} $ making up the design are called point classes or point groups.
The existence of a transversal design $ T _ {0} ( m, t) $ is equivalent to the existence of $ m - 2 $ mutually orthogonal Latin squares of order $ t $. If a $ T _ {0} ( m, t) $ exists, and $ t > 1 $, then $ m \leq t + 1 $.
See also [a1]–[a3] for the recursive construction of and existence results for transversal designs (and of their generalization "transversal design with holes" , [a2]).
One of the most important results on recursive construction of transversal designs (due to R.M. Wilson [a4], see also [a1]) is as follows:
Let $ D $ be a $ T _ {0} ( k+ m, s) $ with point classes $ P _ {1}, \dots, P _ {k} $ and $ Q _ {1}, \dots, Q _ {m} $, let $ T $ be a $ t $-subset of $ Q _ {1} \cup {} \dots \cup Q _ {m} $ and put $ t _ {i} = | T \cap Q _ {i} | $ for $ i = 1, \dots, m $, and $ u _ {B} = | B \cap T | $ for every block $ B $ of $ D $. Assume the existence of $ T _ {0} ( k , t _ {i} ) $ for $ i = 1, \dots, m $ and of $ T _ {u _ {B} } ( k , n + u _ {B} ) $ for each block $ B $ of $ D $. Then $ T _ {0} ( k, ns+ t ) $ also exists.
Transversals designs (and their dual structures, nets) are also of considerable geometric and algebraic interest. For instance, a $ T _ {0} ( s+ 1, s) $ is equivalent to an affine or projective plane of order $ s $, and a $ T _ {0} ( 3, s) $ is basically the same as a quasi-group of order $ s $. Thus, the geometric and algebraic properties of transversal designs (including the study of their automorphism groups) have found considerable interest, cf. [a4].
References
[a1] | T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986) |
[a2] | A.E. Brouwer, "Recursive constructions of mutually orthogonal Latin squares" Ann. Discr. Math. , 46 (1991) pp. 149–168 |
[a3] | D. Jungnickel, "Latin squares, their geometries and their groups: a survey" D. Ray-Chaudhuri (ed.) , Coding Theory and Design Theory , IMA Vol. Math. Appl. , 21 , Springer (1990) pp. 166–225 |
[a4] | R.M. Wilson, "Concerning the number of mutually orthogonal Latin squares" Discr. Math. , 9 (1974) pp. 181–198 |
[a5] | H. Hanani, "Balanced incomplete block designs and related designs" Discrete Math. , 11 (1975) pp. 255–369 |
Transversal system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transversal_system&oldid=52085