Namespaces
Variants
Actions

Difference between revisions of "Pseudo-group"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing superscripts)
 
Line 23: Line 23:
 
is a [[Diffeomorphism|diffeomorphism]]  $  D _ {p} \rightarrow M $,  
 
is a [[Diffeomorphism|diffeomorphism]]  $  D _ {p} \rightarrow M $,  
 
where it is moreover assumed that 1)  $  p , q \in \Gamma $
 
where it is moreover assumed that 1)  $  p , q \in \Gamma $
implies  $  p \circ q = ( \overline{q}\; {}  ^ {-} 1 ( D _ {p} \cap \overline{q}\; ( D _ {q} ) ) , \overline{p}\; \circ \overline{q}\; ) \in \Gamma $;  
+
implies  $  p \circ q = ( \overline{q}  ^ {- 1} ( D _ {p} \cap \overline{q} ( D _ {q} ) ) , \overline{p}\; \circ \overline{q}\; ) \in \Gamma $;  
 
2)  $  p \in \Gamma $
 
2)  $  p \in \Gamma $
implies  $  p  ^ {-} 1 = ( \overline{p}\; ( D _ {p} ) , \overline{p}\; {}  ^ {-} 1 ) \in \Gamma $;  
+
implies  $  p  ^ {- 1} = ( \overline{p} ( D _ {p} ) , \overline{p} ^ {- 1} ) \in \Gamma $;  
 
3)  $  ( M ,  \mathop{\rm id} ) \in \Gamma $;  
 
3)  $  ( M ,  \mathop{\rm id} ) \in \Gamma $;  
 
and 4) if  $  \overline{p}\; $
 
and 4) if  $  \overline{p}\; $
Line 33: Line 33:
 
where  $  D _  \alpha  $
 
where  $  D _  \alpha  $
 
are open sets in  $  M $,  
 
are open sets in  $  M $,  
then  $  ( D , \overline{p}\; ) \in \Gamma \iff ( D _  \alpha  , \overline{p}\; \mid  _ {D _  \alpha  } ) \in \Gamma $
+
then  $  ( D , \overline{p} ) \in \Gamma \iff ( D _  \alpha  , \overline{p}\; \mid  _ {D _  \alpha  } ) \in \Gamma $
 
for any  $  \alpha $.  
 
for any  $  \alpha $.  
 
With necessary changes in 1)–4) one can also define pseudo-groups of transformations of an arbitrary topological space (cf. [[#References|[7]]]) or even of an arbitrary set. As a group of transformations, a pseudo-group of transformations determines an equivalence relation on  $  M $;  
 
With necessary changes in 1)–4) one can also define pseudo-groups of transformations of an arbitrary topological space (cf. [[#References|[7]]]) or even of an arbitrary set. As a group of transformations, a pseudo-group of transformations determines an equivalence relation on  $  M $;  
Line 40: Line 40:
 
is called transitive if  $  M $
 
is called transitive if  $  M $
 
is its only orbit, and is called primitive if  $  M $
 
is its only orbit, and is called primitive if  $  M $
does not admit non-trivial  $  \Gamma $-
+
does not admit non-trivial  $  \Gamma $-invariant foliations (otherwise the pseudo-group is called imprimitive).
invariant foliations (otherwise the pseudo-group is called imprimitive).
 
  
 
A pseudo-group  $  \Gamma $
 
A pseudo-group  $  \Gamma $
Line 50: Line 49:
 
E.g., the pseudo-group of conformal transformations of the plane is a Lie pseudo-group of transformations, determined by the Cauchy–Riemann equations (cf. [[Cauchy-Riemann equations]]). The order of a Lie pseudo-group of transformations is the minimum order of its defining system of differential equations.
 
E.g., the pseudo-group of conformal transformations of the plane is a Lie pseudo-group of transformations, determined by the Cauchy–Riemann equations (cf. [[Cauchy-Riemann equations]]). The order of a Lie pseudo-group of transformations is the minimum order of its defining system of differential equations.
  
Examples of Lie pseudo-groups of transformations. a) The pseudo-group of all holomorphic local transformations of  $  n $-
+
Examples of Lie pseudo-groups of transformations. a) The pseudo-group of all holomorphic local transformations of  $  n $-dimensional complex space  $  \mathbf C  ^ {n} $.
dimensional complex space  $  \mathbf C  ^ {n} $.
 
  
 
b) The pseudo-group of all holomorphic local transformations of  $  \mathbf C  ^ {n} $
 
b) The pseudo-group of all holomorphic local transformations of  $  \mathbf C  ^ {n} $
Line 59: Line 57:
 
with Jacobian 1.
 
with Jacobian 1.
  
d) The Hamilton pseudo-group of all holomorphic local transformations of  $  \mathbf C  ^ {n} $(
+
d) The Hamilton pseudo-group of all holomorphic local transformations of  $  \mathbf C  ^ {n} $ ($  n $ even) preserving the differential 2-form
$  n $
 
even) preserving the differential 2 $-
 
form
 
  
 
$$  
 
$$  
 
\omega  =  d z  ^ {1} \wedge
 
\omega  =  d z  ^ {1} \wedge
 
d z  ^ {2} + d z  ^ {3} \wedge
 
d z  ^ {2} + d z  ^ {3} \wedge
d z  ^ {4} + \dots + d z  ^ {n-} 1
+
d z  ^ {4} + \dots + d z  ^ {n- 1}
 
\wedge d z  ^ {n} .
 
\wedge d z  ^ {n} .
 
$$
 
$$
Line 75: Line 70:
 
up to constant factor.
 
up to constant factor.
  
f) The contact pseudo-group of all holomorphic local transformations of  $  \mathbf C  ^ {n} $(
+
f) The contact pseudo-group of all holomorphic local transformations of  $  \mathbf C  ^ {n} $ ($  n = 2 m + 1 $,  
$  n = 2 m + 1 $,  
 
 
$  m \geq  1 $)  
 
$  m \geq  1 $)  
preserving the differential 1 $-
+
preserving the differential 1-form
form
 
  
 
$$  
 
$$  
 
d z  ^ {n} +
 
d z  ^ {n} +
\sum _ { i= } 1 ^ { m }  
+
\sum _ { i= 1} ^ { m }  
( z  ^ {i}  d z  ^ {m+} i -
+
( z  ^ {i}  d z  ^ {m+ i} -
z  ^ {m+} i d z  ^ {i} )
+
z  ^ {m+ i}  d z  ^ {i} )
 
$$
 
$$
  
Line 106: Line 99:
 
A Lie pseudo-group of transformations is said to be of finite type if there is a natural number  $  d $
 
A Lie pseudo-group of transformations is said to be of finite type if there is a natural number  $  d $
 
such that every local transformation  $  p \in \Gamma $
 
such that every local transformation  $  p \in \Gamma $
is uniquely determined by its  $  d $-
+
is uniquely determined by its  $  d $-jet at some point  $  x \in D _ {p} $;  
jet at some point  $  x \in D _ {p} $;  
 
 
the smallest such  $  d $
 
the smallest such  $  d $
 
is called the degree, or type, of  $  \Gamma $;  
 
is called the degree, or type, of  $  \Gamma $;  
Line 115: Line 107:
  
 
Let  $  \Gamma $
 
Let  $  \Gamma $
be a transitive Lie pseudo-group of transformations of an  $  n $-
+
be a transitive Lie pseudo-group of transformations of an  $  n $-dimensional manifold  $  M $
dimensional manifold  $  M $
 
 
and let  $  G  ^ {r} ( \Gamma ) $
 
and let  $  G  ^ {r} ( \Gamma ) $
be the family of all  $  r $-
+
be the family of all  $  r $-jets of the local transformations in  $  \Gamma $
jets of the local transformations in  $  \Gamma $
 
 
that preserve a point  $  O \in M $,  
 
that preserve a point  $  O \in M $,  
 
i.e. those  $  p \in \Gamma $
 
i.e. those  $  p \in \Gamma $
 
for which  $  O \in D _ {p} $
 
for which  $  O \in D _ {p} $
and  $  \overline{p}\; ( O) = O $.  
+
and  $  \overline{p} ( O) = O $.  
 
The set  $  G  ^ {r} ( \Gamma ) $,  
 
The set  $  G  ^ {r} ( \Gamma ) $,  
endowed with the natural structure of a Lie group, is called the  $  r $-
+
endowed with the natural structure of a Lie group, is called the  $  r $-th order isotropy group of  $  \Gamma $ ($  G  ^ {1} ( \Gamma ) $
th order isotropy group of  $  \Gamma $(
 
$  G  ^ {1} ( \Gamma ) $
 
 
is also called the linear isotropy group of  $  \Gamma $).  
 
is also called the linear isotropy group of  $  \Gamma $).  
 
The Lie algebra  $  \mathfrak g  ^ {r} ( \Gamma ) $
 
The Lie algebra  $  \mathfrak g  ^ {r} ( \Gamma ) $
 
of  $  \Gamma  ^ {r} ( \Gamma ) $
 
of  $  \Gamma  ^ {r} ( \Gamma ) $
can be naturally imbedded in the Lie algebra of  $  r $-
+
can be naturally imbedded in the Lie algebra of  $  r $-jets of vector fields on  $  M $
jets of vector fields on  $  M $
 
 
at  $  O $.  
 
at  $  O $.  
 
If  $  \Gamma $
 
If  $  \Gamma $
is a Lie pseudo-group of transformations of order one, then the kernel  $  G  ^ {(} r) ( \Gamma ) $
+
is a Lie pseudo-group of transformations of order one, then the kernel  $  G  ^ {( r)} ( \Gamma ) $
of the natural homomorphism  $  G  ^ {r+} 1 ( \Gamma ) \rightarrow G  ^ {r} ( \Gamma ) $
+
of the natural homomorphism  $  G  ^ {r+ 1} ( \Gamma ) \rightarrow G  ^ {r} ( \Gamma ) $
 
depends, for any  $  r \geq  1 $,  
 
depends, for any  $  r \geq  1 $,  
 
only on the linear isotropy group  $  G  ^ {1} ( \Gamma ) $,  
 
only on the linear isotropy group  $  G  ^ {1} ( \Gamma ) $,  
and is called its  $  r $-
+
and is called its  $  r $-th extension. A Lie pseudo-group of transformations  $  \Gamma $
th extension. A Lie pseudo-group of transformations  $  \Gamma $
 
 
of order one is of finite type  $  d $
 
of order one is of finite type  $  d $
 
if and only if
 
if and only if
  
 
$$  
 
$$  
  \mathop{\rm dim}  G  ^ {(} d- 1)
+
  \mathop{\rm dim}  G  ^ {( d- 1)}
 
( \Gamma )  \neq  0 \ \  
 
( \Gamma )  \neq  0 \ \  
 
\textrm{ and } \ \  
 
\textrm{ and } \ \  
  \mathop{\rm dim}  G  ^ {(} d)
+
  \mathop{\rm dim}  G  ^ {( d)}
 
( \Gamma )  =  0 .
 
( \Gamma )  =  0 .
 
$$
 
$$
  
 
If, moreover,  $  G  ^ {1} ( \Gamma ) $
 
If, moreover,  $  G  ^ {1} ( \Gamma ) $
is irreducible, then  $  d \leq  2 $(
+
is irreducible, then  $  d \leq  2 $ (cf. ). A Lie pseudo-group of transformations  $  \Gamma $
cf. ). A Lie pseudo-group of transformations  $  \Gamma $
 
 
of order one is a pseudo-group of transformations of finite type only if, and in the complex case if and only if, the Lie algebra  $  \mathfrak g  ^ {1} $
 
of order one is a pseudo-group of transformations of finite type only if, and in the complex case if and only if, the Lie algebra  $  \mathfrak g  ^ {1} $
 
does not contain endomorphisms of rank 1 (cf. [[#References|[10]]]). Such linear Lie algebras are called elliptic.
 
does not contain endomorphisms of rank 1 (cf. [[#References|[10]]]). Such linear Lie algebras are called elliptic.
  
One has calculated the Lie algebras of all extensions  $  G  ^ {(} r) ( \Gamma ) $,  
+
One has calculated the Lie algebras of all extensions  $  G  ^ {( r)} ( \Gamma ) $,  
 
$  r \geq  1 $,  
 
$  r \geq  1 $,  
 
where  $  \Gamma $
 
where  $  \Gamma $
is a Lie pseudo-group of transformations of order one, in terms of the linear isotropy algebra. More precisely, the Lie algebra  $  \mathfrak g  ^ {(} r) ( \Gamma ) $
+
is a Lie pseudo-group of transformations of order one, in terms of the linear isotropy algebra. More precisely, the Lie algebra  $  \mathfrak g  ^ {( r)} ( \Gamma ) $
of  $  G  ^ {(} r) ( \Gamma ) $
+
of  $  G  ^ {( r)} ( \Gamma ) $
consists of the  $  ( r+ 1) $-
+
consists of the  $  ( r+ 1) $-jets of vector fields on  $  M $
jets of vector fields on  $  M $
 
 
at  $  O $
 
at  $  O $
 
having, in some local coordinate system  $  ( x  ^ {1} \dots x  ^ {n} ) $,  
 
having, in some local coordinate system  $  ( x  ^ {1} \dots x  ^ {n} ) $,  
Line 189: Line 173:
  
 
Let  $  M $
 
Let  $  M $
be an  $  n $-
+
be an  $  n $-dimensional differentiable manifold over the field  $  K = \mathbf R $
dimensional differentiable manifold over the field  $  K = \mathbf R $
 
 
or  $  \mathbf C $.  
 
or  $  \mathbf C $.  
 
Every transitive Lie pseudo-group of transformations  $  \Gamma $
 
Every transitive Lie pseudo-group of transformations  $  \Gamma $
 
of order  $  k $
 
of order  $  k $
 
on a manifold  $  M $
 
on a manifold  $  M $
coincides with the pseudo-group of all local automorphism of some  $  G  ^ {k} ( \Gamma ) $-
+
coincides with the pseudo-group of all local automorphism of some  $  G  ^ {k} ( \Gamma ) $-structure (cf. [[G-structure| $  G $-structure]]) of order  $  k $
structure (cf. [[G-structure| $  G $-
+
on  $  M $ (Cartan's first fundamental theorem). The first classification of all primitive Lie pseudo-groups of infinite type was obtained by E. Cartan . According to his theorem, every primitive Lie pseudo-group of transformations of infinite type, consisting of holomorphic local transformations, is locally isomorphic to one of the pseudo-groups of Examples a)–f). This theorem has been repeatedly proved; its modern proofs lead to the study of certain filtered Lie algebras (cf. [[#References|[9]]]). The classification of these filtered Lie algebras can be given on the basis of the classification of simple graded Lie algebras (cf. [[#References|[3]]]). The classification of primitive pseudo-groups of transformations has also been obtained in the real case, and the condition of analyticity of the action of the pseudo-group of transformations has been replaced by the weaker condition of infinite differentiability (cf. [[#References|[8]]], [[#References|[9]]]). One has constructed certain abstract models of transitive Lie pseudo-groups, which came to play the same role in the theory of pseudo-groups of transformations of infinite type as do abstract Lie groups in the finite-dimensional case (cf. , [[#References|[9]]]).
structure]]) of order  $  k $
 
on  $  M $(
 
Cartan's first fundamental theorem). The first classification of all primitive Lie pseudo-groups of infinite type was obtained by E. Cartan . According to his theorem, every primitive Lie pseudo-group of transformations of infinite type, consisting of holomorphic local transformations, is locally isomorphic to one of the pseudo-groups of Examples a)–f). This theorem has been repeatedly proved; its modern proofs lead to the study of certain filtered Lie algebras (cf. [[#References|[9]]]). The classification of these filtered Lie algebras can be given on the basis of the classification of simple graded Lie algebras (cf. [[#References|[3]]]). The classification of primitive pseudo-groups of transformations has also been obtained in the real case, and the condition of analyticity of the action of the pseudo-group of transformations has been replaced by the weaker condition of infinite differentiability (cf. [[#References|[8]]], [[#References|[9]]]). One has constructed certain abstract models of transitive Lie pseudo-groups, which came to play the same role in the theory of pseudo-groups of transformations of infinite type as do abstract Lie groups in the finite-dimensional case (cf. , [[#References|[9]]]).
 
  
 
====References====
 
====References====

Latest revision as of 18:13, 20 January 2022


of transformations of a differentiable manifold $ M $

A family of diffeomorphisms from open subsets of $ M $ into $ M $ that is closed under composition of mappings, transition to the inverse mapping, as well as under restriction and glueing of mappings. More precisely, a pseudo-group of transformations $ \Gamma $ of a manifold $ M $ consists of local transformations, i.e. pairs of the form $ p =( D _ {p} , \overline{p}\; ) $ where $ D _ {p} $ is an open subset of $ M $ and $ \overline{p}\; $ is a diffeomorphism $ D _ {p} \rightarrow M $, where it is moreover assumed that 1) $ p , q \in \Gamma $ implies $ p \circ q = ( \overline{q} ^ {- 1} ( D _ {p} \cap \overline{q} ( D _ {q} ) ) , \overline{p}\; \circ \overline{q}\; ) \in \Gamma $; 2) $ p \in \Gamma $ implies $ p ^ {- 1} = ( \overline{p} ( D _ {p} ) , \overline{p} ^ {- 1} ) \in \Gamma $; 3) $ ( M , \mathop{\rm id} ) \in \Gamma $; and 4) if $ \overline{p}\; $ is a diffeomorphism from an open subset $ D \subset M $ into $ M $ and $ D = \cup _ \alpha D _ \alpha $, where $ D _ \alpha $ are open sets in $ M $, then $ ( D , \overline{p} ) \in \Gamma \iff ( D _ \alpha , \overline{p}\; \mid _ {D _ \alpha } ) \in \Gamma $ for any $ \alpha $. With necessary changes in 1)–4) one can also define pseudo-groups of transformations of an arbitrary topological space (cf. [7]) or even of an arbitrary set. As a group of transformations, a pseudo-group of transformations determines an equivalence relation on $ M $; the equivalence classes are called its orbits. A pseudo-group $ \Gamma $ of transformations of a manifold $ M $ is called transitive if $ M $ is its only orbit, and is called primitive if $ M $ does not admit non-trivial $ \Gamma $-invariant foliations (otherwise the pseudo-group is called imprimitive).

A pseudo-group $ \Gamma $ of transformations of a differentiable manifold is called a Lie pseudo-group of transformations defined by a system $ S $ of partial differential equations if $ \Gamma $ consists of exactly those local transformations of $ M $ that satisfy the system $ S $. E.g., the pseudo-group of conformal transformations of the plane is a Lie pseudo-group of transformations, determined by the Cauchy–Riemann equations (cf. Cauchy-Riemann equations). The order of a Lie pseudo-group of transformations is the minimum order of its defining system of differential equations.

Examples of Lie pseudo-groups of transformations. a) The pseudo-group of all holomorphic local transformations of $ n $-dimensional complex space $ \mathbf C ^ {n} $.

b) The pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ with constant Jacobian.

c) The pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ with Jacobian 1.

d) The Hamilton pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ ($ n $ even) preserving the differential 2-form

$$ \omega = d z ^ {1} \wedge d z ^ {2} + d z ^ {3} \wedge d z ^ {4} + \dots + d z ^ {n- 1} \wedge d z ^ {n} . $$

e) The pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ preserving $ \omega $ up to constant factor.

f) The contact pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ ($ n = 2 m + 1 $, $ m \geq 1 $) preserving the differential 1-form

$$ d z ^ {n} + \sum _ { i= 1} ^ { m } ( z ^ {i} d z ^ {m+ i} - z ^ {m+ i} d z ^ {i} ) $$

up to a factor (which can be a function).

g) The real analogues of the complex pseudo-groups of transformations of Examples a)–f).

The order of the Lie pseudo-groups of Examples a), c)–f) is 1, while in b) the order is 2.

Any Lie group $ G $ of transformations of a manifold $ M $ determines a pseudo-group $ \Gamma ( G) $ of transformations, consisting of the restrictions of the transformations from $ G $ onto open subsets of $ M $. A pseudo-group of transformations of the form $ \Gamma ( G) $ is called globalizable. E.g., a pseudo-group of local conformal transformations of the sphere $ S ^ {n} $ is globalizable for $ n > 2 $ and not globalizable for $ n = 2 $.

A Lie pseudo-group of transformations is said to be of finite type if there is a natural number $ d $ such that every local transformation $ p \in \Gamma $ is uniquely determined by its $ d $-jet at some point $ x \in D _ {p} $; the smallest such $ d $ is called the degree, or type, of $ \Gamma $; if such a $ d $ does not exist, then $ \Gamma $ is called a pseudo-group of transformations of infinite type. The pseudo-groups of Examples a)–f) are primitive Lie pseudo-groups of transformations of infinite type.

Let $ \Gamma $ be a transitive Lie pseudo-group of transformations of an $ n $-dimensional manifold $ M $ and let $ G ^ {r} ( \Gamma ) $ be the family of all $ r $-jets of the local transformations in $ \Gamma $ that preserve a point $ O \in M $, i.e. those $ p \in \Gamma $ for which $ O \in D _ {p} $ and $ \overline{p} ( O) = O $. The set $ G ^ {r} ( \Gamma ) $, endowed with the natural structure of a Lie group, is called the $ r $-th order isotropy group of $ \Gamma $ ($ G ^ {1} ( \Gamma ) $ is also called the linear isotropy group of $ \Gamma $). The Lie algebra $ \mathfrak g ^ {r} ( \Gamma ) $ of $ \Gamma ^ {r} ( \Gamma ) $ can be naturally imbedded in the Lie algebra of $ r $-jets of vector fields on $ M $ at $ O $. If $ \Gamma $ is a Lie pseudo-group of transformations of order one, then the kernel $ G ^ {( r)} ( \Gamma ) $ of the natural homomorphism $ G ^ {r+ 1} ( \Gamma ) \rightarrow G ^ {r} ( \Gamma ) $ depends, for any $ r \geq 1 $, only on the linear isotropy group $ G ^ {1} ( \Gamma ) $, and is called its $ r $-th extension. A Lie pseudo-group of transformations $ \Gamma $ of order one is of finite type $ d $ if and only if

$$ \mathop{\rm dim} G ^ {( d- 1)} ( \Gamma ) \neq 0 \ \ \textrm{ and } \ \ \mathop{\rm dim} G ^ {( d)} ( \Gamma ) = 0 . $$

If, moreover, $ G ^ {1} ( \Gamma ) $ is irreducible, then $ d \leq 2 $ (cf. ). A Lie pseudo-group of transformations $ \Gamma $ of order one is a pseudo-group of transformations of finite type only if, and in the complex case if and only if, the Lie algebra $ \mathfrak g ^ {1} $ does not contain endomorphisms of rank 1 (cf. [10]). Such linear Lie algebras are called elliptic.

One has calculated the Lie algebras of all extensions $ G ^ {( r)} ( \Gamma ) $, $ r \geq 1 $, where $ \Gamma $ is a Lie pseudo-group of transformations of order one, in terms of the linear isotropy algebra. More precisely, the Lie algebra $ \mathfrak g ^ {( r)} ( \Gamma ) $ of $ G ^ {( r)} ( \Gamma ) $ consists of the $ ( r+ 1) $-jets of vector fields on $ M $ at $ O $ having, in some local coordinate system $ ( x ^ {1} \dots x ^ {n} ) $, the form

$$ \sum v _ {i _ {0} \dots i _ {r} } ^ {i} x ^ {i _ {0} } \dots x ^ {i _ {r} } \frac \partial {\partial x ^ {i} } , $$

where $ v _ {i _ {0} \dots i _ {r} } ^ {i} $ is an arbitrary tensor that is symmetric with respect to the lower indices and that satisfies the condition: For any fixed $ i _ {1} \dots i _ {r} $ the matrix

$$ \| v _ {j , i _ {1} \dots i _ {r} } ^ {i} \| _ {i , j = 1 } ^ {n} $$

belongs to $ \mathfrak g ^ {1} ( \Gamma ) $, relative to some coordinate system $ ( x ^ {i} ) $.

Let $ M $ be an $ n $-dimensional differentiable manifold over the field $ K = \mathbf R $ or $ \mathbf C $. Every transitive Lie pseudo-group of transformations $ \Gamma $ of order $ k $ on a manifold $ M $ coincides with the pseudo-group of all local automorphism of some $ G ^ {k} ( \Gamma ) $-structure (cf. $ G $-structure) of order $ k $ on $ M $ (Cartan's first fundamental theorem). The first classification of all primitive Lie pseudo-groups of infinite type was obtained by E. Cartan . According to his theorem, every primitive Lie pseudo-group of transformations of infinite type, consisting of holomorphic local transformations, is locally isomorphic to one of the pseudo-groups of Examples a)–f). This theorem has been repeatedly proved; its modern proofs lead to the study of certain filtered Lie algebras (cf. [9]). The classification of these filtered Lie algebras can be given on the basis of the classification of simple graded Lie algebras (cf. [3]). The classification of primitive pseudo-groups of transformations has also been obtained in the real case, and the condition of analyticity of the action of the pseudo-group of transformations has been replaced by the weaker condition of infinite differentiability (cf. [8], [9]). One has constructed certain abstract models of transitive Lie pseudo-groups, which came to play the same role in the theory of pseudo-groups of transformations of infinite type as do abstract Lie groups in the finite-dimensional case (cf. , [9]).

References

[1] S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) MR0193578 Zbl 0129.13102
[2a] E. Cartan, "Sur la structure des groupes infinis de transformations" , Oeuvres complètes , 2 , Gauthier-Villars (1953) pp. 571–624 MR1509054 MR1509040 Zbl 36.0223.03 Zbl 35.0176.04
[2b] E. Cartan, "Sur la structure des groupes infinis de transformations" , Oeuvres complètes , 2 , Gauthier-Villars (1953) pp. 625–714 MR1509054 MR1509040 Zbl 36.0223.03 Zbl 35.0176.04
[2c] E. Cartan, "Les groupes de transformations continus, infinis, simples" , Oeuvres complètes , 2 , Gauthier-Villars (1953) pp. 857–925 MR1509105 Zbl 40.0193.02 Zbl 38.0194.01
[2d] E. Cartan, "Les groupes de transformations continus, infinis, simples" , Oeuvres complètes , 2 , Gauthier-Villars (1953) pp. 1335–1384 MR1509105 Zbl 40.0193.02 Zbl 38.0194.01
[3] V. Guillemin, "Infinite dimensional primitive Lie algebras" J. Diff. Geom. , 4 : 3 (1970) pp. 257–282 MR0268233 Zbl 0223.17007
[4] S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972) MR0355886 Zbl 0246.53031
[5a] S. Kobayashi, T. Nagano, "On filtered Lie algebras and geometric structures I" J. Math. Mech. , 13 : 5 (1964) pp. 875–907 MR0168704 Zbl 0142.19504
[5b] S. Kobayashi, T. Nagano, "On filtered Lie algebras and geometric structures III" J. Math. Mech. , 14 : 5 (1965) pp. 679–706 MR0188364
[6a] M. Kuranishi, "On the local theory of continuous infinite pseudo groups I" Nagoya Math. J. , 15 (1959) pp. 225–260 MR0116071 Zbl 0212.56501
[6b] M. Kuranishi, "On the local theory of continuous infinite pseudo groups II" Nagoya Math. J. , 19 (1961) pp. 55–91 MR0142694 Zbl 0212.56501
[7] P. Libermann, "Pseudogroupes infinitésimaux attachées aux pseudogroupes de Lie" Bull. Soc. Math. France , 87 : 4 (1959) pp. 409–425 MR123279
[8] S. Shnider, "The classification of real primitive infinite Lie algebras" J. Diff. Geom. , 4 : 1 (1970) pp. 81–89 MR0285574 Zbl 0244.17014
[9] I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan. I. The transitive groups" J. d'Anal. Math. , 15 (1965) pp. 1–114 MR0217822 Zbl 0277.58008
[10] R.L. Wilson, "Irreducible Lie algebras of infinite type" Proc. Amer. Math. Soc. , 29 : 2 (1971) pp. 243–249 MR0277582 Zbl 0216.07401

Comments

References

[a1] C. Albert, P. Molino, "Pseudogroupes de Lie transitifs" , I–II , Hermann (1984–1987) MR0904048 MR0770061 Zbl 0682.53003 Zbl 0563.53027
[a2] J.F. Pommaret, "Systems of partial differential equations and Lie pseudogroups" , Gordon & Breach (1978) MR0517402 Zbl 0418.35028 Zbl 0401.58006
How to Cite This Entry:
Pseudo-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-group&oldid=51938
This article was adapted from an original article by E.B. Vinberg (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article