Difference between revisions of "Whitehead multiplication"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 11: | Line 11: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | A multiplication in homotopy groups $ \pi _ {m} ( X) \times \pi _ {n} ( X) \rightarrow \pi _ {m- | + | A multiplication in homotopy groups $ \pi _ {m} ( X) \times \pi _ {n} ( X) \rightarrow \pi _ {m- n+ 1} ( X) $, |
− | defined by G.W. Whitehead . In $ S ^ {k} $ | + | defined by G.W. Whitehead. In $ S ^ {k} $ |
one takes a fixed decomposition into two cells $ e ^ {0} $ | one takes a fixed decomposition into two cells $ e ^ {0} $ | ||
and $ e ^ {k} $. | and $ e ^ {k} $. | ||
Line 19: | Line 19: | ||
$ e ^ {m} $, | $ e ^ {m} $, | ||
$ e ^ {n} $, | $ e ^ {n} $, | ||
− | $ e ^ {m+} | + | $ e ^ {m+n} $. |
Therefore the characteristic mapping $ \phi _ {n,m } $: | Therefore the characteristic mapping $ \phi _ {n,m } $: | ||
$$ | $$ | ||
− | \partial e ^ {n+} | + | \partial e ^ {n+m} = S ^ {n+ m- 1} \rightarrow S ^ {m} \times S ^ {n} |
$$ | $$ | ||
Line 29: | Line 29: | ||
$$ | $$ | ||
− | S ^ {m+ | + | S ^ {m+ n- 1} \mathop \rightarrow \limits ^ { {W( m,n) }} S ^ {m} \lor S ^ {n} \rightarrow S ^ {m} \times |
S ^ {n} , | S ^ {n} , | ||
$$ | $$ | ||
Line 38: | Line 38: | ||
represented by mappings $ f $ | represented by mappings $ f $ | ||
and $ g $. | and $ g $. | ||
− | Then the Whitehead product $ [ \alpha , \beta ] \in \pi _ {n+ | + | Then the Whitehead product $ [ \alpha , \beta ] \in \pi _ {n+ m- 1} ( X) $ |
is given by the composition | is given by the composition | ||
$$ | $$ | ||
− | S ^ {m+ | + | S ^ {m+ n- 1} \mathop \rightarrow \limits ^ { {W( n,m) }} S ^ {m} \lor S ^ {n} \mathop \rightarrow \limits ^ { {f\lor g }} X. |
$$ | $$ | ||
Line 50: | Line 50: | ||
2) if $ \alpha , \beta \in \pi _ {1} ( X) $, | 2) if $ \alpha , \beta \in \pi _ {1} ( X) $, | ||
− | then $ [ \alpha , \beta ] = \alpha \beta \alpha ^ {-} | + | then $ [ \alpha , \beta ] = \alpha \beta \alpha ^ {-1} \beta ^ {-1} $; |
3) if $ X $ | 3) if $ X $ | ||
Line 80: | Line 80: | ||
is a generator, is equal to twice the generator of $ \pi _ {3} ( S ^ {2} ) $; | is a generator, is equal to twice the generator of $ \pi _ {3} ( S ^ {2} ) $; | ||
− | 7) the kernel of the epimorphism $ \Sigma : \pi _ {4n-} | + | 7) the kernel of the epimorphism $ \Sigma : \pi _ {4n-1} ( S ^ {2n} ) \rightarrow \pi _ {4n} ( S ^ {2n+ 1} ) $ |
− | is generated by one element, $ [ i _ {2n} , i _ {2n} ] \in \pi _ {4n-} | + | is generated by one element, $ [ i _ {2n} , i _ {2n} ] \in \pi _ {4n-1} ( S ^ {2n} ) $, |
where $ i _ {2n} \in \pi _ {2n} ( S ^ {2n} ) $ | where $ i _ {2n} \in \pi _ {2n} ( S ^ {2n} ) $ | ||
is the canonical generator. | is the canonical generator. |
Latest revision as of 15:48, 29 March 2021
A multiplication in homotopy groups $ \pi _ {m} ( X) \times \pi _ {n} ( X) \rightarrow \pi _ {m- n+ 1} ( X) $,
defined by G.W. Whitehead. In $ S ^ {k} $
one takes a fixed decomposition into two cells $ e ^ {0} $
and $ e ^ {k} $.
Then the product of spheres $ S ^ {m} \times S ^ {n} $
has a decomposition into cells $ e ^ {0} $,
$ e ^ {m} $,
$ e ^ {n} $,
$ e ^ {m+n} $.
Therefore the characteristic mapping $ \phi _ {n,m } $:
$$ \partial e ^ {n+m} = S ^ {n+ m- 1} \rightarrow S ^ {m} \times S ^ {n} $$
factorizes as
$$ S ^ {m+ n- 1} \mathop \rightarrow \limits ^ { {W( m,n) }} S ^ {m} \lor S ^ {n} \rightarrow S ^ {m} \times S ^ {n} , $$
where $ S ^ {m} \lor S ^ {n} $ is a bouquet of spheres. Now, take classes $ \alpha \in \pi _ {m} ( X) $ and $ \beta \in \pi _ {n} ( X) $, represented by mappings $ f $ and $ g $. Then the Whitehead product $ [ \alpha , \beta ] \in \pi _ {n+ m- 1} ( X) $ is given by the composition
$$ S ^ {m+ n- 1} \mathop \rightarrow \limits ^ { {W( n,m) }} S ^ {m} \lor S ^ {n} \mathop \rightarrow \limits ^ { {f\lor g }} X. $$
The following properties are satisfied by this product:
1) $ [ \alpha , \beta ] = (- 1) ^ { \mathop{\rm deg} \alpha \mathop{\rm deg} \beta } [ \beta , \alpha ] $;
2) if $ \alpha , \beta \in \pi _ {1} ( X) $, then $ [ \alpha , \beta ] = \alpha \beta \alpha ^ {-1} \beta ^ {-1} $;
3) if $ X $ is $ n $- simple, then $ [ \alpha , \beta ] = 0 $ for $ \alpha \in \pi _ {1} ( X) $, $ \beta \in \pi _ {n} ( X) $;
4) if $ [ \alpha , \beta ]= 0 $ for all $ \alpha \in \pi _ {1} ( X) $, $ \beta \in \pi _ {n} ( X) $, then $ X $ is $ n $- simple;
5) if $ \alpha \in \pi _ {n} ( X) $, $ \beta \in \pi _ {m} ( X) $, $ \gamma \in \pi _ {k} ( X) $, $ n , m, k > 1 $, then
$$ (- 1) ^ {nk} [[ \alpha , \beta ] , \gamma ] +(- 1) ^ {mn} [[ \beta , \gamma ] ,\ \alpha ] + (- 1) ^ {mk} [[ \gamma , \alpha ] , \beta ] = 0; $$
6) the element $ [ i _ {1} , i _ {2} ] \in \pi _ {3} ( S ^ {2} ) $, where $ i _ {2} \in \pi _ {2} ( S ^ {2} )= \mathbf Z $ is a generator, is equal to twice the generator of $ \pi _ {3} ( S ^ {2} ) $;
7) the kernel of the epimorphism $ \Sigma : \pi _ {4n-1} ( S ^ {2n} ) \rightarrow \pi _ {4n} ( S ^ {2n+ 1} ) $ is generated by one element, $ [ i _ {2n} , i _ {2n} ] \in \pi _ {4n-1} ( S ^ {2n} ) $, where $ i _ {2n} \in \pi _ {2n} ( S ^ {2n} ) $ is the canonical generator.
References
[1a] | G.W. Whitehead, "On products in homotopy groups" Ann. of Math. , 47 (1946) pp. 460–475 |
[1b] | G.W. Whitehead, "A generalization of the Hopf invariant" Ann. of Math. , 51 (1950) pp. 192–237 |
Comments
References
[a1] | G.W. Whitehead, "Elements of homotopy theory" , Springer (1978) |
[a2] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. 419–420 |
[a3] | S.-T. Hu, "Homotopy theory" , Acad. Press (1959) pp. 138–139 |
Whitehead multiplication. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whitehead_multiplication&oldid=51702