Difference between revisions of "Sharp norm"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 24: | Line 24: | ||
$$ | $$ | ||
− | {| \partial \sigma ^ {r+} | + | {| \partial \sigma ^ {r+1} | } ^ \prime \leq | \sigma ^ {r+1} | , |
$$ | $$ | ||
Line 30: | Line 30: | ||
{| T _ {v} \sigma ^ {r} - \sigma ^ {r} | } ^ \prime \leq | {| T _ {v} \sigma ^ {r} - \sigma ^ {r} | } ^ \prime \leq | ||
\frac{ | \frac{ | ||
− | {| \sigma ^ {r} | } ^ \prime | v | }{r+} | + | {| \sigma ^ {r} | } ^ \prime | v | }{r+1} , |
− | |||
$$ | $$ | ||
Line 39: | Line 38: | ||
If $ A = \sum a _ {i} \sigma _ {i} ^ {r} $, | If $ A = \sum a _ {i} \sigma _ {i} ^ {r} $, | ||
− | the sharp norm $ | A | ^ \ | + | the sharp norm $ | A | ^ \sharp $ |
is expressed as follows: | is expressed as follows: | ||
$$ | $$ | ||
− | | A | ^ \ | + | | A | ^ \sharp = \inf \left \{ |
− | \frac{\sum | a _ {i} | | \sigma _ {i} ^ {r} | | v _ {i} | }{r+} | + | \frac{\sum | a _ {i} | | \sigma _ {i} ^ {r} | | v _ {i} | }{r+1} + \left | |
− | + | \sum a _ {i} T _ {v _ {i} } \sigma _ {i} ^ {r} \right | ^ \flat \right \} , | |
− | \sum a _ {i} T _ {v _ {i} } \sigma _ {i} ^ {r} \right | ^ \ | ||
$$ | $$ | ||
− | where $ | C | ^ \ | + | where $ | C | ^ \flat $ |
is the [[Flat norm|flat norm]] of the chain $ C $, | is the [[Flat norm|flat norm]] of the chain $ C $, | ||
and the infimum is taken over all shifts $ v $. | and the infimum is taken over all shifts $ v $. | ||
Line 56: | Line 54: | ||
$$ | $$ | ||
− | | a A | ^ \ | + | | a A | ^ \sharp = | a | | A | ^ \sharp , |
$$ | $$ | ||
$$ | $$ | ||
− | | A + B | ^ \ | + | | A + B | ^ \sharp \leq | A | ^ \sharp + | B | ^ \sharp , |
$$ | $$ | ||
$$ | $$ | ||
− | | A | ^ \ | + | | A | ^ \sharp = 0 \iff A = 0 , |
$$ | $$ | ||
$$ | $$ | ||
− | | A | ^ \ | + | | A | ^ \sharp \leq | A | ^ \flat ; |
$$ | $$ | ||
if $ r = 0 $, | if $ r = 0 $, | ||
− | then $ | A | ^ \ | + | then $ | A | ^ \sharp = | A | ^ \flat $. |
The completion of the space $ C _ {r} ( E ^ {n} ) $ | The completion of the space $ C _ {r} ( E ^ {n} ) $ | ||
− | is the separable Banach space $ C _ {r} ^ \ | + | is the separable Banach space $ C _ {r} ^ \sharp ( E ^ {n} ) $, |
− | whose elements are known as $ r $- | + | whose elements are known as $ r $-dimensional sharp chains. For any $ r $-dimensional polyhedral chain $ A $ |
− | dimensional sharp chains. For any $ r $- | ||
− | dimensional polyhedral chain $ A $ | ||
and any vector $ v $, | and any vector $ v $, | ||
$$ | $$ | ||
− | | T _ {v} A - A | ^ \ | + | | T _ {v} A - A | ^ \sharp \leq |
− | \frac{| A | | v | }{r+} | + | \frac{| A | | v | }{r+1} , |
− | |||
$$ | $$ | ||
Line 91: | Line 86: | ||
by the vector $ v $ | by the vector $ v $ | ||
of length $ | v | $. | of length $ | v | $. | ||
− | A flat chain of finite mass is a sharp chain; in general, any flat chain may also be considered as a sharp chain in the following sense: If $ A = \lim\limits ^ \ | + | A flat chain of finite mass is a sharp chain; in general, any flat chain may also be considered as a sharp chain in the following sense: If $ A = \lim\limits ^ \flat A _ {i} $, |
where $ A _ {i} $ | where $ A _ {i} $ | ||
− | are polyhedral chains, and $ \psi A = \lim\limits ^ \ | + | are polyhedral chains, and $ \psi A = \lim\limits ^ \sharp A _ {i} $, |
where $ \psi $ | where $ \psi $ | ||
− | is a linear bijective mapping from the space $ C _ {r} ^ \ | + | is a linear bijective mapping from the space $ C _ {r} ^ \flat ( E ^ {n)} $ |
− | into the space $ C _ {r} ^ \ | + | into the space $ C _ {r} ^ \sharp ( E ^ {n)} $, |
− | and $ \psi C _ {r} ^ \ | + | and $ \psi C _ {r} ^ \flat $ |
− | is dense in $ C _ {r} ^ \ | + | is dense in $ C _ {r} ^ \sharp $ |
in the sharp norm. | in the sharp norm. | ||
Line 104: | Line 99: | ||
of a sharp chain [[#References|[1]]]; an $ r $- | of a sharp chain [[#References|[1]]]; an $ r $- | ||
dimensional sharp chain $ X = XA $ | dimensional sharp chain $ X = XA $ | ||
− | is an element of the space $ C ^ {\ | + | is an element of the space $ C ^ {\sharp r } ( E ^ {n} ) $ |
− | dual to $ C _ {r} ^ \ | + | dual to $ C _ {r} ^ \sharp ( E ^ {n} ) $; |
it is a flat cochain, and | it is a flat cochain, and | ||
$$ | $$ | ||
− | | X | \leq | X | ^ \ | + | | X | \leq | X | ^ \flat \leq | X | ^ \sharp , |
$$ | $$ | ||
where $ | X | $ | where $ | X | $ | ||
is the co-mass of $ X $, | is the co-mass of $ X $, | ||
− | while the sharp co-norm $ | X | ^ \ | + | while the sharp co-norm $ | X | ^ \sharp $ |
− | is defined similarly to the flat norm $ | X | ^ \ | + | is defined similarly to the flat norm $ | X | ^ \flat $. |
The co-boundary $ dX $ | The co-boundary $ dX $ | ||
of a sharp cochain is not necessarily sharp [[#References|[1]]], but | of a sharp cochain is not necessarily sharp [[#References|[1]]], but | ||
$$ | $$ | ||
− | | dX | \leq | X | ^ \ | + | | dX | \leq | X | ^ \flat \leq | X | ^ \sharp . |
$$ | $$ | ||
Line 138: | Line 133: | ||
$$ | $$ | ||
− | ( r + 1 ) {\mathcal L} ( X) \leq | X | ^ \ | + | ( r + 1 ) {\mathcal L} ( X) \leq | X | ^ \sharp . |
$$ | $$ | ||
Line 144: | Line 139: | ||
$$ | $$ | ||
− | | X | ^ \ | + | | X | ^ \sharp = \sup \{ | X | ^ \flat ,\ |
( r + 1 ) {\mathcal L} ( X) \} , | ( r + 1 ) {\mathcal L} ( X) \} , | ||
$$ | $$ | ||
Line 170: | Line 165: | ||
| T _ {v} \gamma - \gamma | ^ \prime \leq \ | | T _ {v} \gamma - \gamma | ^ \prime \leq \ | ||
− | \frac{| v | | \gamma | }{r+} | + | \frac{| v | | \gamma | }{r+1} , |
− | |||
$$ | $$ | ||
− | where $ T _ {v} \gamma ( Q) = \gamma T _ {-} | + | where $ T _ {v} \gamma ( Q) = \gamma T _ {-v} ( Q) $ |
is the shift of the function $ \gamma $ | is the shift of the function $ \gamma $ | ||
by the vector $ v $ | by the vector $ v $ | ||
Line 180: | Line 174: | ||
$$ | $$ | ||
− | T _ {-} | + | T _ {-v} ( Q) = \{ {q - v } : {q \in Q \subset E ^ {n} } \} |
; | ; | ||
$$ | $$ | ||
Line 189: | Line 183: | ||
such that $ | \gamma | ^ \prime \leq \epsilon | \gamma | $ | such that $ | \gamma | ^ \prime \leq \epsilon | \gamma | $ | ||
if the support $ \supp t \gamma \subset U _ \eta ( p) $ | if the support $ \supp t \gamma \subset U _ \eta ( p) $ | ||
− | and $ \gamma ( E ^ {n) | + | and $ \gamma ( E ^ {n}) = 0 $. |
− | The sharp norm $ | \gamma | ^ \ | + | The sharp norm $ | \gamma | ^ \sharp $ |
is represented as follows: | is represented as follows: | ||
$$ | $$ | ||
− | | \gamma | ^ \ | + | | \gamma | ^ \sharp = \sup _ \omega \int\limits _ {E ^ {n} |
} \omega d \gamma , | } \omega d \gamma , | ||
$$ | $$ | ||
Line 201: | Line 195: | ||
where the $ \omega $ | where the $ \omega $ | ||
are $ r $- | are $ r $- | ||
− | dimensional sharp forms for which $ | \omega | ^ \ | + | dimensional sharp forms for which $ | \omega | ^ \sharp \leq 1 $. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957)</TD></TR></table> |
Revision as of 21:46, 20 February 2021
in the space of $ r $-
dimensional polyhedral chains $ C _ {r} ( E ^ {n)} $
The largest semi-norm $ {| \cdot | } ^ \prime $ which, for any cell $ \sigma ^ {r} $ of volume $ | \sigma ^ {r} | $, satisfies the inequalities
$$ {| \sigma ^ {r} | } ^ \prime \leq | \sigma ^ {r} | , $$
$$ {| \partial \sigma ^ {r+1} | } ^ \prime \leq | \sigma ^ {r+1} | , $$
$$ {| T _ {v} \sigma ^ {r} - \sigma ^ {r} | } ^ \prime \leq \frac{ {| \sigma ^ {r} | } ^ \prime | v | }{r+1} , $$
where $ T _ {v} \sigma ^ {r} $ is the cell obtained by shifting by a vector $ v $ of length $ | v | $.
If $ A = \sum a _ {i} \sigma _ {i} ^ {r} $, the sharp norm $ | A | ^ \sharp $ is expressed as follows:
$$ | A | ^ \sharp = \inf \left \{ \frac{\sum | a _ {i} | | \sigma _ {i} ^ {r} | | v _ {i} | }{r+1} + \left | \sum a _ {i} T _ {v _ {i} } \sigma _ {i} ^ {r} \right | ^ \flat \right \} , $$
where $ | C | ^ \flat $ is the flat norm of the chain $ C $, and the infimum is taken over all shifts $ v $.
One has
$$ | a A | ^ \sharp = | a | | A | ^ \sharp , $$
$$ | A + B | ^ \sharp \leq | A | ^ \sharp + | B | ^ \sharp , $$
$$ | A | ^ \sharp = 0 \iff A = 0 , $$
$$ | A | ^ \sharp \leq | A | ^ \flat ; $$
if $ r = 0 $, then $ | A | ^ \sharp = | A | ^ \flat $.
The completion of the space $ C _ {r} ( E ^ {n} ) $ is the separable Banach space $ C _ {r} ^ \sharp ( E ^ {n} ) $, whose elements are known as $ r $-dimensional sharp chains. For any $ r $-dimensional polyhedral chain $ A $ and any vector $ v $,
$$ | T _ {v} A - A | ^ \sharp \leq \frac{| A | | v | }{r+1} , $$
where $ T _ {v} A $ is the chain obtained by shifting $ A $ by the vector $ v $ of length $ | v | $. A flat chain of finite mass is a sharp chain; in general, any flat chain may also be considered as a sharp chain in the following sense: If $ A = \lim\limits ^ \flat A _ {i} $, where $ A _ {i} $ are polyhedral chains, and $ \psi A = \lim\limits ^ \sharp A _ {i} $, where $ \psi $ is a linear bijective mapping from the space $ C _ {r} ^ \flat ( E ^ {n)} $ into the space $ C _ {r} ^ \sharp ( E ^ {n)} $, and $ \psi C _ {r} ^ \flat $ is dense in $ C _ {r} ^ \sharp $ in the sharp norm.
It is not possible to give a correct definition of the boundary $ \partial A $ of a sharp chain [1]; an $ r $- dimensional sharp chain $ X = XA $ is an element of the space $ C ^ {\sharp r } ( E ^ {n} ) $ dual to $ C _ {r} ^ \sharp ( E ^ {n} ) $; it is a flat cochain, and
$$ | X | \leq | X | ^ \flat \leq | X | ^ \sharp , $$
where $ | X | $ is the co-mass of $ X $, while the sharp co-norm $ | X | ^ \sharp $ is defined similarly to the flat norm $ | X | ^ \flat $. The co-boundary $ dX $ of a sharp cochain is not necessarily sharp [1], but
$$ | dX | \leq | X | ^ \flat \leq | X | ^ \sharp . $$
The Lipschitz constant $ {\mathcal L} ( X) $ of a cochain $ X $ is defined as follows:
$$ {\mathcal L} ( X) = \sup \left \{ \frac{| X \cdot ( T _ {v} A - A ) | }{| A | | v | } \right \} , $$
where the $ A $ are polyhedral chains. For sharp cochains this supremum is finite, and
$$ ( r + 1 ) {\mathcal L} ( X) \leq | X | ^ \sharp . $$
Any flat cochain with a finite Lipschitz constant is sharp, and
$$ | X | ^ \sharp = \sup \{ | X | ^ \flat ,\ ( r + 1 ) {\mathcal L} ( X) \} , $$
and also
$$ | dX | \leq ( r + 1 ) {\mathcal L} ( X) . $$
Similar concepts are introduced for $ r $- dimensional polyhedral chains in open subsets $ R \subset E ^ {n} $. See also Sharp form.
The sharp norm in the space of additive functions $ \gamma $ whose values are $ r $- vectors is the largest of the semi-norms $ | \cdot | ^ \prime $ which satisfy the conditions:
$ | \gamma | ^ \prime \leq | \gamma | $, where $ | \gamma | $ is the complete variation of $ \gamma $;
$$ | T _ {v} \gamma - \gamma | ^ \prime \leq \ \frac{| v | | \gamma | }{r+1} , $$
where $ T _ {v} \gamma ( Q) = \gamma T _ {-v} ( Q) $ is the shift of the function $ \gamma $ by the vector $ v $ of length $ | v | $:
$$ T _ {-v} ( Q) = \{ {q - v } : {q \in Q \subset E ^ {n} } \} ; $$
for each point $ p $ and an arbitrary $ \epsilon $ there exists an $ \eta > 0 $ such that $ | \gamma | ^ \prime \leq \epsilon | \gamma | $ if the support $ \supp t \gamma \subset U _ \eta ( p) $ and $ \gamma ( E ^ {n}) = 0 $.
The sharp norm $ | \gamma | ^ \sharp $ is represented as follows:
$$ | \gamma | ^ \sharp = \sup _ \omega \int\limits _ {E ^ {n} } \omega d \gamma , $$
where the $ \omega $ are $ r $- dimensional sharp forms for which $ | \omega | ^ \sharp \leq 1 $.
References
[1] | H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957) |
Sharp norm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sharp_norm&oldid=51635