Difference between revisions of "Rank statistic"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 17: | Line 17: | ||
is called a rank statistic. A classical example of a rank statistic is the Kendall coefficient of rank correlation $ \tau $ | is called a rank statistic. A classical example of a rank statistic is the Kendall coefficient of rank correlation $ \tau $ | ||
between the vectors $ R $ | between the vectors $ R $ | ||
− | and $ | + | and $ \ell = ( 1 \dots n ) $, |
defined by the formula | defined by the formula | ||
Line 34: | Line 34: | ||
$$ | $$ | ||
− | T = \sum _ { i= } | + | T = \sum _ { i=1} ^ { n } a ( i , R _ {i} ) |
$$ | $$ | ||
Line 44: | Line 44: | ||
\frac{12}{n ( n - 1 ) } | \frac{12}{n ( n - 1 ) } | ||
− | \sum _ { i= } | + | \sum _ { i=1} ^ { n } |
\left ( i - n+ | \left ( i - n+ | ||
\frac{1}{2} | \frac{1}{2} | ||
Line 77: | Line 77: | ||
\frac{1}{n} | \frac{1}{n} | ||
− | \sum _ { i= } | + | \sum _ { i=1} ^ { n } |
\widehat{a} ( i , R _ {i} ) - ( n - 2 ) {\mathsf E} \{ T \} , | \widehat{a} ( i , R _ {i} ) - ( n - 2 ) {\mathsf E} \{ T \} , | ||
$$ | $$ | ||
where $ \widehat{a} ( i , j ) = {\mathsf E} \{ T \mid R _ {i} = j \} $, | where $ \widehat{a} ( i , j ) = {\mathsf E} \{ T \mid R _ {i} = j \} $, | ||
− | $ 1 \leq i , j \leq n $( | + | $ 1 \leq i , j \leq n $ |
− | see [[#References|[1]]]). | + | (see [[#References|[1]]]). |
There is an intrinsic connection between $ \tau $ | There is an intrinsic connection between $ \tau $ | ||
Line 101: | Line 101: | ||
$$ | $$ | ||
− | This equality implies that the [[ | + | This equality implies that the [[correlation coefficient]] $ \mathop{\rm corr} ( \rho , \tau ) $ |
between $ \rho $ | between $ \rho $ | ||
and $ \tau $ | and $ \tau $ |
Latest revision as of 17:47, 8 February 2021
A statistic (cf. Statistical estimator) constructed from a rank vector. If $ R = ( R _ {1} \dots R _ {n} ) $
is the rank vector constructed from a random observation vector $ X = ( X _ {1} \dots X _ {n} ) $,
then any statistic $ T = T ( R) $
which is a function of $ R $
is called a rank statistic. A classical example of a rank statistic is the Kendall coefficient of rank correlation $ \tau $
between the vectors $ R $
and $ \ell = ( 1 \dots n ) $,
defined by the formula
$$ \tau = \frac{1}{n ( n - 1 ) } \sum _ {i \neq j } \mathop{\rm sign} ( i - j ) \ \mathop{\rm sign} ( R _ {i} - R _ {j} ) . $$
In the class of all rank statistics a special place is occupied by so-called linear rank statistics, defined as follows. Let $ A = \| a ( i , j ) \| $ be an arbitrary square matrix of order $ n $. Then the statistic
$$ T = \sum _ { i=1} ^ { n } a ( i , R _ {i} ) $$
is called a linear rank statistic. For example, the Spearman coefficient of rank correlation $ \rho $, defined by the formula
$$ \rho = \frac{12}{n ( n - 1 ) } \sum _ { i=1} ^ { n } \left ( i - n+ \frac{1}{2} \right ) \left ( R _ {i} - n+ \frac{1}{2} \right ) , $$
is a linear rank statistic.
Linear rank statistics are, as a rule, simple to construct from the computational point of view and their distributions are easy to find. For this reason the notion of projection of a rank statistic into the family of linear rank statistics plays an important role in the theory of rank statistics. If $ T $ is a rank statistic constructed from a random vector $ X $ under a hypothesis $ H _ {0} $ about its distribution, then a linear rank statistic $ \widehat{T} = \widehat{T} ( R) $ such that $ {\mathsf E} \{ ( T - \widehat{T} ) ^ {2} \} $ is minimal under the condition that $ H _ {0} $ is true, is called the projection of $ T $ into the family of linear rank statistics. As a rule, $ \widehat{T} $ approximates $ T $ well enough and the difference $ T - \widehat{T} $ is negligibly small as $ n \rightarrow \infty $. If the hypothesis $ H _ {0} $ under which the components $ X _ {1} \dots X _ {n} $ of the random vector $ X $ are independent random variables is true, then the projection $ \widehat{T} $ of $ T $ can be determined by the formula
$$ \tag{* } \widehat{T} = n- \frac{1}{n} \sum _ { i=1} ^ { n } \widehat{a} ( i , R _ {i} ) - ( n - 2 ) {\mathsf E} \{ T \} , $$
where $ \widehat{a} ( i , j ) = {\mathsf E} \{ T \mid R _ {i} = j \} $, $ 1 \leq i , j \leq n $ (see [1]).
There is an intrinsic connection between $ \tau $ and $ \rho $. It is shown in [1] that the projection $ \widehat \tau $ of the Kendall coefficient $ \tau $ into the family of linear rank statistics coincides, up to a multiplicative constant, with the Spearman coefficient $ \rho $; namely,
$$ \widehat \tau = \frac{2}{3} \left ( 1 + \frac{1}{n} \right ) \rho . $$
This equality implies that the correlation coefficient $ \mathop{\rm corr} ( \rho , \tau ) $ between $ \rho $ and $ \tau $ is equal to
$$ \mathop{\rm corr} ( \rho , \tau ) = \ \sqrt { \frac{ {\mathsf D} \widehat \tau }{ {\mathsf D} \tau } } = \ \frac{2 ( n + 1 ) }{\sqrt {2 n ( 2 n + 5 ) } } , $$
implying that these rank statistics are asymptotically equivalent for large $ n $( cf. [2]).
References
[1] | J. Hájek, Z. Sidák, "Theory of rank tests" , Acad. Press (1967) |
[2] | M.G. Kendall, "Rank correlation methods" , Griffin (1970) |
Rank statistic. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rank_statistic&oldid=51568