Namespaces
Variants
Actions

Difference between revisions of "Semi-invariant"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fix tex)
 
Line 10: Line 10:
 
{{TEX|auto}}
 
{{TEX|auto}}
 
{{TEX|done}}
 
{{TEX|done}}
 +
 +
''cumulant''
  
 
A numerical characteristic of random variables related to the concept of a [[Moment|moment]] of higher order. If  $  \xi = ( \xi _ {1} \dots \xi _ {k} ) $
 
A numerical characteristic of random variables related to the concept of a [[Moment|moment]] of higher order. If  $  \xi = ( \xi _ {1} \dots \xi _ {k} ) $
 
is a random vector,  $  \phi _  \xi  ( t) = {\mathsf E} e ^ {i ( t, \xi ) } $
 
is a random vector,  $  \phi _  \xi  ( t) = {\mathsf E} e ^ {i ( t, \xi ) } $
is its characteristic function,  $  t = ( t _ {1} \dots t _ {k} ) $,  
+
is its [[characteristic function]],  $  t = ( t _ {1} \dots t _ {k} ) $,  
 
$  t _ {i} \in \mathbf R $,
 
$  t _ {i} \in \mathbf R $,
  
Line 93: Line 95:
 
  }
 
  }
  
\frac{\nu ! }{\lambda  ^ {(} 1) ! \dots \lambda  ^ {(} q) ! }
+
\frac{\nu ! }{\lambda  ^ {( 1)} ! \dots \lambda  ^ {( q)} ! }
  
 
\prod _ {p = 1 } ^ { q }  
 
\prod _ {p = 1 } ^ { q }  
s _  \xi  ^ {( \lambda  ^ {(} p) ) } ,
+
s _  \xi  ^ {( \lambda  ^ {( p)} ) } ,
 
$$
 
$$
  
Line 104: Line 106:
 
  } }{q }
 
  } }{q }
 
   
 
   
\frac{\nu ! }{\lambda  ^ {(} 1) ! \dots \lambda  ^ {(} q) ! }
+
\frac{\nu ! }{\lambda  ^ {( 1)} ! \dots \lambda  ^ {( q)} ! }
  
\prod _ {p = 1 } ^ { q }  m _  \xi  ^ {( \lambda  ^ {(} p) ) } ,
+
\prod _ {p = 1 } ^ { q }  m _  \xi  ^ {( \lambda  ^ {( p)} ) } ,
 
$$
 
$$
  
 
where  $  \sum  ^ {*} $
 
where  $  \sum  ^ {*} $
denotes summation over all ordered sets of non-negative integer vectors  $  \lambda  ^ {(} p) $,  
+
denotes summation over all ordered sets of non-negative integer vectors  $  \lambda  ^ {( p)} $,  
$  | \lambda  ^ {(} p) | > 0 $,  
+
$  | \lambda  ^ {( p)} | > 0 $,  
 
with as sum the vector  $  \nu $.  
 
with as sum the vector  $  \nu $.  
 
(Here  $  v! $
 
(Here  $  v! $
 
is defined as  $  v ! = v _ {1} ! \dots v _ {k} ! $,  
 
is defined as  $  v ! = v _ {1} ! \dots v _ {k} ! $,  
and similarly for the  $  \lambda  ^ {(} p) ! $.)  
+
and similarly for the  $  \lambda  ^ {( p)} ! $.)  
 
In particular, if  $  \xi $
 
In particular, if  $  \xi $
 
is a random variable  $  ( k = 1) $,  
 
is a random variable  $  ( k = 1) $,  
$  m _ {n} = m _  \xi  ^ {(} n) = {\mathsf E} \xi  ^ {n} $,  
+
$  m _ {n} = m _  \xi  ^ {( n)} = {\mathsf E} \xi  ^ {n} $,  
and  $  s _ {n} = s _  \xi  ^ {(} n) $,  
+
and  $  s _ {n} = s _  \xi  ^ {( n)} $,  
 
then
 
then
  

Latest revision as of 12:22, 17 January 2021


cumulant

A numerical characteristic of random variables related to the concept of a moment of higher order. If $ \xi = ( \xi _ {1} \dots \xi _ {k} ) $ is a random vector, $ \phi _ \xi ( t) = {\mathsf E} e ^ {i ( t, \xi ) } $ is its characteristic function, $ t = ( t _ {1} \dots t _ {k} ) $, $ t _ {i} \in \mathbf R $,

$$ ( t, \xi ) = \ \sum _ {i = 1 } ^ { k } t _ {i} \xi _ {i} , $$

and if for some $ n \geq 1 $ the moments $ {\mathsf E} | \xi _ {i} | ^ {n} < \infty $, $ i = 1 \dots k $, then the (mixed) moments

$$ m _ \xi ^ {( \nu _ {1} \dots \nu _ {k} ) } = \ {\mathsf E} \xi _ {1} ^ {\nu _ {1} } {} \dots \xi _ {k} ^ {\nu _ {k} } $$

exist for all non-negative integers $ \nu _ {1} \dots \nu _ {k} $ such that $ \nu _ {1} + \dots + \nu _ {k} \leq n $. Under these conditions,

$$ \phi _ \xi ( t) = \ \sum _ {\nu _ {1} + \dots + \nu _ {k} \leq n } \frac{i ^ {\nu _ {1} + \dots + \nu _ {k} } }{\nu _ {1} ! \dots \nu _ {k} ! } m _ \xi ^ {( \nu _ {1} \dots \nu _ {k} ) } \times $$

$$ \times t _ {1} ^ {\nu _ {1} } \dots t _ {k} ^ {\nu _ {k} } + o (| t | ^ {n} ), $$

where $ | t | = | t _ {1} | + \dots + | t _ {k} | $, and for sufficiently small $ | t | $ the principal value of $ \mathop{\rm ln} \phi _ \xi ( t) $ can be represented by Taylor's formula as

$$ \mathop{\rm ln} \phi _ \xi ( t) = \ \sum _ {\nu _ {1} + \dots + \nu _ {k} \leq n } \frac{i ^ {\nu _ {1} + \dots + \nu _ {k} } }{\nu _ {1} ! \dots \nu _ {k} ! } s _ \xi ^ {( \nu _ {1} \dots \nu _ {k} ) } \times $$

$$ \times t _ {1} ^ {\nu _ {1} } \dots t _ {k} ^ {\nu _ {k} } + o (| t | ^ {n} ), $$

where the coefficients $ s _ \xi ^ {( \nu _ {1} \dots \nu _ {k} ) } $ are called the (mixed) semi-invariants, or cumulants, of order $ \nu = ( \nu _ {1} \dots \nu _ {k} ) $ of the vector $ \xi = ( \xi _ {1} \dots \xi _ {k} ) $. For independent random vectors $ \xi = ( \xi _ {1} \dots \xi _ {k} ) $ and $ \eta = ( \eta _ {1} \dots \eta _ {k} ) $,

$$ s _ {\xi + \eta } ^ {( \nu _ {1} \dots \nu _ {k} ) } = \ s _ \xi ^ {( \nu _ {1} \dots \nu _ {k} ) } + s _ \eta ^ {( \nu _ {1} \dots \nu _ {k} ) } , $$

that is, the semi-invariant of a sum of independent random vectors is the sum of their semi-invariants. This is the reason for the term "semi-invariant" , which reflects the additive property of independent variables (but, in general, the property does not hold for dependent variables).

The following formulas, connecting moments and semi-invariants, hold:

$$ m _ \xi ^ {( \nu ) } = \ \sum ^ {*} { \frac{1}{q!} } \frac{\nu ! }{\lambda ^ {( 1)} ! \dots \lambda ^ {( q)} ! } \prod _ {p = 1 } ^ { q } s _ \xi ^ {( \lambda ^ {( p)} ) } , $$

$$ s _ \xi ^ {( \nu ) } = \sum ^ {*} \frac{(- 1) ^ {q - 1 } }{q } \frac{\nu ! }{\lambda ^ {( 1)} ! \dots \lambda ^ {( q)} ! } \prod _ {p = 1 } ^ { q } m _ \xi ^ {( \lambda ^ {( p)} ) } , $$

where $ \sum ^ {*} $ denotes summation over all ordered sets of non-negative integer vectors $ \lambda ^ {( p)} $, $ | \lambda ^ {( p)} | > 0 $, with as sum the vector $ \nu $. (Here $ v! $ is defined as $ v ! = v _ {1} ! \dots v _ {k} ! $, and similarly for the $ \lambda ^ {( p)} ! $.) In particular, if $ \xi $ is a random variable $ ( k = 1) $, $ m _ {n} = m _ \xi ^ {( n)} = {\mathsf E} \xi ^ {n} $, and $ s _ {n} = s _ \xi ^ {( n)} $, then

$$ m _ {1} = s _ {1} , $$

$$ m _ {2} = s _ {2} + s _ {1} ^ {2} , $$

$$ m _ {3} = s _ {3} + 3s _ {1} s _ {2} + s _ {1} ^ {3} , $$

$$ m _ {4} = s _ {4} + 3s _ {2} ^ {2} + 4s _ {1} s _ {3} + 6s _ {1} ^ {2} s _ {2} + s _ {1} ^ {4} , $$

and

$$ s _ {1} = m _ {1} (= {\mathsf E} \xi ), $$

$$ s _ {2} = m _ {2} - m _ {1} ^ {2} (= {\mathsf D} \xi ), $$

$$ s _ {3} = m _ {3} - 3m _ {1} m _ {2} + 2m _ {1} ^ {3} , $$

$$ s _ {4} = m _ {4} - 3m _ {2} ^ {2} - 4m _ {1} m _ {3} + 12m _ {1} ^ {2} m _ {2} - 6m _ {1} ^ {4} . $$

References

[1] V.P. Leonov, A.N. Shiryaev, "On a method of calculation of semi-invariants" Theory Probab. Appl. , 4 : 3 (1959) pp. 319–329 Teor. Veroyatnost. i Primen. , 4 : 3 (1959) pp. 342–355
[2] A.N. Shiryaev, "Probability" , Springer (1984) (Translated from Russian)

Comments

References

[a1] A. Stuart, J.K. Ord, "Kendall's advanced theory of statistics" , Griffin (1987)
[a2] L. Schmetterer, "Introduction to mathematical statistics" , Springer (1974) pp. Chapt. 1, §42 (Translated from German)
[a3] A. Rényi, "Probability theory" , North-Holland (1970) pp. Chapt. 3, §15
How to Cite This Entry:
Semi-invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-invariant&oldid=51361
This article was adapted from an original article by A.N. Shiryaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article