Difference between revisions of "Cornish-Fisher expansion"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 18: | Line 18: | ||
as $ t \rightarrow 0 $, | as $ t \rightarrow 0 $, | ||
then, subject to certain assumptions on $ F ( x, t) $, | then, subject to certain assumptions on $ F ( x, t) $, | ||
− | the Cornish–Fisher expansion of the function $ x = F ^ {-} | + | the Cornish–Fisher expansion of the function $ x = F ^ {-1} [ \Phi ( z), t] $ |
− | where $ F ^ {-} | + | (where $ F ^ {-1} $ |
is the function inverse to $ F $) | is the function inverse to $ F $) | ||
has the form | has the form | ||
$$ \tag{1 } | $$ \tag{1 } | ||
− | x = z + \sum _ {i = 1 } ^ | + | x = z + \sum _ {i = 1 } ^ { m - 1 } |
S _ {i} ( z) t ^ {i} + O ( t ^ {m} ), | S _ {i} ( z) t ^ {i} + O ( t ^ {m} ), | ||
$$ | $$ | ||
Line 30: | Line 30: | ||
where the $ S _ {i} ( z) $ | where the $ S _ {i} ( z) $ | ||
are certain polynomials in $ z $. | are certain polynomials in $ z $. | ||
− | Similarly, one defines the Cornish–Fisher expansion of the function $ z = \Phi ^ {-} | + | Similarly, one defines the Cornish–Fisher expansion of the function $ z = \Phi ^ {-1} [ F ( x, t)] $( |
− | $ \Phi ^ {-} | + | $ \Phi ^ {-1} $ |
being the function inverse to $ \Phi $) | being the function inverse to $ \Phi $) | ||
in powers of $ x $: | in powers of $ x $: | ||
$$ \tag{2 } | $$ \tag{2 } | ||
− | z = x + \sum _ {i = 1 } ^ | + | z = x + \sum _ {i = 1 } ^ { m - 1 } |
Q _ {i} ( x) t ^ {i} + O ( t ^ {m} ), | Q _ {i} ( x) t ^ {i} + O ( t ^ {m} ), | ||
$$ | $$ | ||
Line 42: | Line 42: | ||
where the $ Q _ {i} ( x) $ | where the $ Q _ {i} ( x) $ | ||
are certain polynomials in $ x $. | are certain polynomials in $ x $. | ||
− | Formula (2) is obtained by expanding $ \Phi ^ {-} | + | Formula (2) is obtained by expanding $ \Phi ^ {-1} $ |
in a Taylor series about the point $ \Phi ( x) $ | in a Taylor series about the point $ \Phi ( x) $ | ||
and using the Edgeworth expansion. Formula (1) is the inversion of (2). | and using the Edgeworth expansion. Formula (1) is the inversion of (2). | ||
Line 48: | Line 48: | ||
If $ X $ | If $ X $ | ||
is a random variable with distribution function $ F ( x, t) $, | is a random variable with distribution function $ F ( x, t) $, | ||
− | then the variable $ Z = Z ( X) = \Phi ^ {-} | + | then the variable $ Z = Z ( X) = \Phi ^ {-1} [ F ( X , t) ] $ |
is normally distributed with parameters $ ( 0, 1) $, | is normally distributed with parameters $ ( 0, 1) $, | ||
and, as follows from (2), $ \Phi ( x) $ | and, as follows from (2), $ \Phi ( x) $ | ||
Line 55: | Line 55: | ||
$$ | $$ | ||
\overline{Z}\; = \ | \overline{Z}\; = \ | ||
− | X + \sum _ {i = 1 } ^ | + | X + \sum _ {i = 1 } ^ { m - 1 } |
Q _ {i} ( X) t ^ {i} | Q _ {i} ( X) t ^ {i} | ||
$$ | $$ |
Latest revision as of 16:41, 15 January 2021
An asymptotic expansion of the quantiles of a distribution (close to the normal standard one) in terms of the corresponding quantiles of the standard normal distribution, in powers of a small parameter. It was studied by E.A. Cornish and R.A. Fisher [1]. If $ F ( x, t) $
is a distribution function depending on $ t $
as a parameter, if $ \Phi ( x) $
is the normal distribution function with parameters $ ( 0, 1) $,
and if $ F ( x, t) \rightarrow \Phi ( x) $
as $ t \rightarrow 0 $,
then, subject to certain assumptions on $ F ( x, t) $,
the Cornish–Fisher expansion of the function $ x = F ^ {-1} [ \Phi ( z), t] $
(where $ F ^ {-1} $
is the function inverse to $ F $)
has the form
$$ \tag{1 } x = z + \sum _ {i = 1 } ^ { m - 1 } S _ {i} ( z) t ^ {i} + O ( t ^ {m} ), $$
where the $ S _ {i} ( z) $ are certain polynomials in $ z $. Similarly, one defines the Cornish–Fisher expansion of the function $ z = \Phi ^ {-1} [ F ( x, t)] $( $ \Phi ^ {-1} $ being the function inverse to $ \Phi $) in powers of $ x $:
$$ \tag{2 } z = x + \sum _ {i = 1 } ^ { m - 1 } Q _ {i} ( x) t ^ {i} + O ( t ^ {m} ), $$
where the $ Q _ {i} ( x) $ are certain polynomials in $ x $. Formula (2) is obtained by expanding $ \Phi ^ {-1} $ in a Taylor series about the point $ \Phi ( x) $ and using the Edgeworth expansion. Formula (1) is the inversion of (2).
If $ X $ is a random variable with distribution function $ F ( x, t) $, then the variable $ Z = Z ( X) = \Phi ^ {-1} [ F ( X , t) ] $ is normally distributed with parameters $ ( 0, 1) $, and, as follows from (2), $ \Phi ( x) $ approximates the distribution function of the variable
$$ \overline{Z}\; = \ X + \sum _ {i = 1 } ^ { m - 1 } Q _ {i} ( X) t ^ {i} $$
as $ t \rightarrow 0 $ better than it approximates $ F ( x, t) $. If $ X $ has zero expectation and unit variance, then the first terms of the expansion (1) have the form
$$ x = z + [ \gamma _ {1} h _ {1} ( z)] + [ \gamma _ {2} h _ {2} ( z) + \gamma _ {1} ^ {2} h _ {3} ( z)] + \dots . $$
Here $ \gamma _ {1} = {\kappa _ {3} / \kappa _ {2} } ^ {3/2} $, $ \gamma _ {2} = \kappa _ {4} / \kappa _ {2} ^ {2} $, with $ \kappa _ {r} $ the $ r $- th cumulant of $ X $, $ h _ {1} ( z) = H _ {2} ( z)/6 $, $ h _ {2} ( z) = H _ {3} ( z) / 24 $, $ h _ {3} ( z) = - [ 2H _ {3} ( z) + H _ {1} ( z)]/36 $, and with $ H _ {r} ( z) $ the Hermite polynomials, defined by the relation
$$ \phi ( z) H _ {r} ( z) = \ (- 1) ^ {r} \frac{d ^ {r} \phi ( z) }{dz ^ {r} } \ \ ( \phi ( z) = \Phi ^ \prime ( z)). $$
Concerning expansions for random variables obeying limit laws from the family of Pearson distributions see [3]. See also Random variables, transformations of.
References
[1] | E.A. Cornish, R.A. Fisher, "Moments and cumulants in the specification of distributions" Rev. Inst. Internat. Statist. , 5 (1937) pp. 307–320 |
[2] | M.G. Kendall, A. Stuart, "The advanced theory of statistics. Distribution theory" , 3. Design and analysis , Griffin (1969) |
[3] | L.N. Bol'shev, "Asymptotically Pearson transformations" Theor. Probab. Appl. , 8 (1963) pp. 121–146 Teor. Veroyatnost. i Primenen. , 8 : 2 (1963) pp. 129–155 |
Comments
For the methods of using an Edgeworth expansion to obtain (2) (see also Edgeworth series), see also [a1].
References
[a1] | P.J. Bickel, "Edgeworth expansions in non parametric statistics" Ann. Statist. , 2 (1974) pp. 1–20 |
[a2] | N.L. Johnson, S. Kotz, "Distributions in statistics" , 1 , Houghton Mifflin (1970) |
Cornish-Fisher expansion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cornish-Fisher_expansion&oldid=51347