Namespaces
Variants
Actions

Difference between revisions of "Serial subgroup"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fix tex)
 
Line 44: Line 44:
  
 
$$  
 
$$  
A _  \tau   riangle\left B _  \tau  \subset  A _  \sigma   riangle\left B _  \sigma   \right .$$
+
A _  \tau \lhd B _  \tau  \subset  A _  \sigma \lhd B _  \sigma
 +
$$
  
 
and
 
and
  
 
$$  
 
$$  
B _  \sigma  =  \cap _ {\tau > \sigma } A _  \tau  ,\  A _  \sigma  =  \cup _ {\tau < \sigma } B _  \tau  ,
+
B _  \sigma  =  \cap _ {\tau > \sigma } A _  \tau  \,,\  A _  \sigma  =  \cup _ {\tau < \sigma } B _  \tau  ,
 
$$
 
$$
  
and for a finite series, indexed by  $  \{ 0 \dots n \} $,  
+
and for a finite series, indexed by  $  \{ 0,\ldots, n \} $,  
 
hence
 
hence
  
 
$$  
 
$$  
B _ {i}  =  A _ {i+} 1 ,\  i = 0 \dots n- 1.
+
B _ {i}  =  A _ {i+1} ,\  i = 0, \ldots, n- 1.
 
$$
 
$$
  
Line 72: Line 73:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.J.S. Robinson,   "Finiteness condition and generalized soluble groups" , '''1''' , Springer (1972) pp. Chapt. 1</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  D.J.S. Robinson, "Finiteness conditions and generalized soluble groups. Part 1".  Ergebnisse der Mathematik und ihrer Grenzgebiete. Band '''62'''. Springer (1972) {{ZBL|0243.20032}} Chap. 1</TD></TR>
 +
</table>

Latest revision as of 11:42, 12 January 2021


Let $ H $ be a subgroup of a group $ G $. A series of subgroups between $ H $ and $ G $, or, more briefly, a series between $ H $ and $ G $, is a set of subgroups of $ G $,

$$ S = \{ {A _ \sigma , B _ \sigma } : {\sigma \in \Sigma } \} , $$

where $ \Sigma $ is a linearly ordered set, such that

i) $ H \subset A _ \sigma $, $ H \subset B _ \sigma $ for all $ \sigma \in \Sigma $;

ii) $ G \setminus H = \cup _ \sigma ( B _ \sigma \setminus A _ \sigma ) $;

iii) $ A _ \sigma $ is a normal subgroup of $ B _ \sigma $;

iv) $ B _ \tau $ is a subgroup of $ A _ \sigma $ if $ \tau < \sigma $.

It follows that for all $ \tau < \sigma $,

$$ A _ \tau \lhd B _ \tau \subset A _ \sigma \lhd B _ \sigma $$

and

$$ B _ \sigma = \cap _ {\tau > \sigma } A _ \tau \,,\ A _ \sigma = \cup _ {\tau < \sigma } B _ \tau , $$

and for a finite series, indexed by $ \{ 0,\ldots, n \} $, hence

$$ B _ {i} = A _ {i+1} ,\ i = 0, \ldots, n- 1. $$

A subgroup $ H $ is called serial if there is a series of subgroups between $ H $ and $ G $. If $ G $ is finite, a subgroup $ H $ is serial if and only if it is a subnormal subgroup. A subgroup $ H $ is called an ascendant subgroup in $ G $ if there is an ascending series of subgroups between $ H $ and $ G $, that is, a series whose index set $ \Sigma $ is well-ordered.

References

[a1] D.J.S. Robinson, "Finiteness conditions and generalized soluble groups. Part 1". Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 62. Springer (1972) Zbl 0243.20032 Chap. 1
How to Cite This Entry:
Serial subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Serial_subgroup&oldid=51285