Difference between revisions of "Probability measure"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 17: | Line 17: | ||
A real non-negative function $ {\mathsf P} $ | A real non-negative function $ {\mathsf P} $ | ||
on a class $ {\mathcal A} $ | on a class $ {\mathcal A} $ | ||
− | of subsets (events) of a non-empty set $ \Omega $( | + | of subsets (events) of a non-empty set $ \Omega $ |
− | the space of elementary events) forming a $ \sigma $- | + | (the space of elementary events) forming a $ \sigma $- |
field (i.e. a set closed with respect to countable set-theoretic operations) such that | field (i.e. a set closed with respect to countable set-theoretic operations) such that | ||
$$ | $$ | ||
{\mathsf P} ( \Omega ) = 1 \ \textrm{ and } \ \ | {\mathsf P} ( \Omega ) = 1 \ \textrm{ and } \ \ | ||
− | {\mathsf P} \left ( \cup _ { i= } | + | {\mathsf P} \left ( \cup _ { i=1} ^ \infty A _ {i} \right ) = \ |
− | \sum _ { i= } | + | \sum _ { i=1 } ^ \infty {\mathsf P} ( A _ {i} ) |
$$ | $$ | ||
Line 37: | Line 37: | ||
$ {\mathcal A} $ | $ {\mathcal A} $ | ||
is the class of all subsets of $ \Omega $; | is the class of all subsets of $ \Omega $; | ||
− | $ {\mathsf P} ( \{ 1 \} ) = {\mathsf P} ( \{ 2 \} ) = 1 / 2 $( | + | $ {\mathsf P} ( \{ 1 \} ) = {\mathsf P} ( \{ 2 \} ) = 1 / 2 $ |
− | this probability measure corresponds to a random experiment consisting in throwing a symmetrical coin; if heads correspond to 1 while tails correspond to 2, the probability of throwing heads (tails) is 1/2); | + | (this probability measure corresponds to a random experiment consisting in throwing a symmetrical coin; if heads correspond to 1 while tails correspond to 2, the probability of throwing heads (tails) is 1/2); |
2) $ \Omega = \{ 0, 1 , . . . \} $; | 2) $ \Omega = \{ 0, 1 , . . . \} $; | ||
Line 51: | Line 51: | ||
$$ | $$ | ||
− | where $ \lambda > 0 $( | + | where $ \lambda > 0 $ |
− | the [[Poisson distribution|Poisson distribution]]); | + | (the [[Poisson distribution|Poisson distribution]]); |
3) $ \Omega = \mathbf R ^ {1} $; | 3) $ \Omega = \mathbf R ^ {1} $; | ||
Line 64: | Line 64: | ||
\int\limits _ { A } e ^ {- x ^ {2} /2 } dx | \int\limits _ { A } e ^ {- x ^ {2} /2 } dx | ||
$$ | $$ | ||
− | |||
(the [[Normal distribution|normal distribution]]); | (the [[Normal distribution|normal distribution]]); | ||
Line 81: | Line 80: | ||
$$ | $$ | ||
= \ | = \ | ||
− | ( 2 \pi ) ^ {- | + | ( 2 \pi ) ^ {- n/2} \prod _ { i=1 } ^ { n } ( t _ {i} - t _ {i-1} ) ^ {- 1/2} \times |
$$ | $$ | ||
Line 90: | Line 89: | ||
\frac{1}{2} | \frac{1}{2} | ||
− | \sum _ { i= } | + | \sum _ { i=1 } ^ { n } |
− | \frac{( x _ {i} - x _ {i-} | + | \frac{( x _ {i} - x _ {i-1} ) ^ {2} }{t _ {i} - t _ {i-1} } |
\right \} dx _ {1} \dots d x _ {n} , | \right \} dx _ {1} \dots d x _ {n} , | ||
$$ | $$ | ||
where $ n $ | where $ n $ | ||
− | is an arbitrary natural number and $ 0 = t _ {0} < t _ {1} < \dots < t _ {n} \leq 1 $( | + | is an arbitrary natural number and $ 0 = t _ {0} < t _ {1} < \dots < t _ {n} \leq 1 $ |
− | the [[Wiener measure|Wiener measure]]). | + | (the [[Wiener measure|Wiener measure]]). |
====References==== | ====References==== |
Latest revision as of 19:48, 8 January 2021
probability distribution, probability
2020 Mathematics Subject Classification: Primary: 60-01 [MSN][ZBL]
A real non-negative function $ {\mathsf P} $ on a class $ {\mathcal A} $ of subsets (events) of a non-empty set $ \Omega $ (the space of elementary events) forming a $ \sigma $- field (i.e. a set closed with respect to countable set-theoretic operations) such that
$$ {\mathsf P} ( \Omega ) = 1 \ \textrm{ and } \ \ {\mathsf P} \left ( \cup _ { i=1} ^ \infty A _ {i} \right ) = \ \sum _ { i=1 } ^ \infty {\mathsf P} ( A _ {i} ) $$
if $ A _ {i} \cap A _ {j} = \emptyset $ for $ i \neq j $( $ \sigma $- additivity).
Examples of probability measures.
1) $ \Omega = \{ 1, 2 \} $; $ {\mathcal A} $ is the class of all subsets of $ \Omega $; $ {\mathsf P} ( \{ 1 \} ) = {\mathsf P} ( \{ 2 \} ) = 1 / 2 $ (this probability measure corresponds to a random experiment consisting in throwing a symmetrical coin; if heads correspond to 1 while tails correspond to 2, the probability of throwing heads (tails) is 1/2);
2) $ \Omega = \{ 0, 1 , . . . \} $; $ {\mathcal A} $ is the class of all subsets of $ \Omega $;
$$ {\mathsf P} ( \{ k \} ) = \ \frac{\lambda ^ {k} }{k!} e ^ {- \lambda } , $$
where $ \lambda > 0 $ (the Poisson distribution);
3) $ \Omega = \mathbf R ^ {1} $; $ {\mathcal A} $ is the class of Borel subsets of $ \mathbf R ^ {1} $;
$$ {\mathsf P} ( A) = \ \frac{1}{\sqrt {2 \pi } } \int\limits _ { A } e ^ {- x ^ {2} /2 } dx $$ (the normal distribution);
4) $ \Omega = C _ {0} [ 0, 1] $ is the space of continuous real functions $ x( t) $ on $ [ 0, 1] $ that vanish at the point zero; $ {\mathcal A} $ is the class of Borel subsets with respect to the topology of uniform convergence; $ {\mathsf P} $ is the measure which is uniquely defined by the formula
$$ {\mathsf P} ( x : a _ {i} < x ( t _ {i} ) < b _ {i} ,\ i = 1 \dots n) = $$
$$ = \ ( 2 \pi ) ^ {- n/2} \prod _ { i=1 } ^ { n } ( t _ {i} - t _ {i-1} ) ^ {- 1/2} \times $$
$$ \times \int\limits _ { a _ {1} } ^ { {b _ 1 } } \dots \int\limits _ {a _ {n} } ^ { {b _ n} } \mathop{\rm exp} \left \{ - \frac{1}{2} \sum _ { i=1 } ^ { n } \frac{( x _ {i} - x _ {i-1} ) ^ {2} }{t _ {i} - t _ {i-1} } \right \} dx _ {1} \dots d x _ {n} , $$
where $ n $ is an arbitrary natural number and $ 0 = t _ {0} < t _ {1} < \dots < t _ {n} \leq 1 $ (the Wiener measure).
References
[K] | A.N. Kolmogorov, "Foundations of the theory of probability" , Chelsea, reprint (1950) (Translated from Russian) MR0032961 |
[G] | B.V. Gnedenko, "The theory of probability", Chelsea, reprint (1962) (Translated from Russian) |
Comments
References
[B] | P. Billingsley, "Probability and measure" , Wiley (1979) MR0534323 Zbl 0411.60001 |
Probability measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Probability_measure&oldid=51252