Difference between revisions of "Asymptotically-unbiased test"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(better) |
||
Line 11: | Line 11: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | A concept indicating that | + | A concept indicating that a [[statistical test]] is unbiased in the limit. For example, in the case of $ n $ |
independent samples from a one-dimensional distribution depending on a parameter $ \theta \in \Omega $, | independent samples from a one-dimensional distribution depending on a parameter $ \theta \in \Omega $, | ||
let $ H $ | let $ H $ | ||
Line 20: | Line 20: | ||
$$ | $$ | ||
\theta \in \Omega _ {K} ,\ \Omega _ {H} \cup \Omega _ {K} = \Omega ,\ \ | \theta \in \Omega _ {K} ,\ \Omega _ {H} \cup \Omega _ {K} = \Omega ,\ \ | ||
− | \Omega _ {H} \ | + | \Omega _ {H} \cap \Omega _ {K} = \emptyset . |
$$ | $$ | ||
The critical set $ R _ {n} $ | The critical set $ R _ {n} $ | ||
− | in the $ n $- | + | in the $ n $-dimensional Euclidean space, $ n=1, 2 \dots $ |
− | dimensional Euclidean space, $ n=1, 2 \dots $ | ||
is an asymptotically-unbiased test of the hypothesis $ H $ | is an asymptotically-unbiased test of the hypothesis $ H $ | ||
with level $ \alpha $ | with level $ \alpha $ |
Latest revision as of 11:31, 1 January 2021
A concept indicating that a statistical test is unbiased in the limit. For example, in the case of $ n $
independent samples from a one-dimensional distribution depending on a parameter $ \theta \in \Omega $,
let $ H $
be the null hypothesis: $ \theta \in \Omega _ {H} $,
and let $ K $
be the alternative:
$$ \theta \in \Omega _ {K} ,\ \Omega _ {H} \cup \Omega _ {K} = \Omega ,\ \ \Omega _ {H} \cap \Omega _ {K} = \emptyset . $$
The critical set $ R _ {n} $ in the $ n $-dimensional Euclidean space, $ n=1, 2 \dots $ is an asymptotically-unbiased test of the hypothesis $ H $ with level $ \alpha $ if
$$ \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ) \leq \alpha , \ \theta \in \Omega _ {H} , $$
$$ \alpha \leq \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ),\ \theta \in \Omega _ {K} . $$
The function
$$ \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ) $$
is called the asymptotic power function of the test $ R _ {n} $.
Asymptotically-unbiased test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotically-unbiased_test&oldid=51124